On lower bounds for Lp norms in the central limit theorem for independent and m-dependent random variables

被引:0
作者
Sunklodas J. [1 ,2 ]
机构
[1] Institute of Mathematics and Informatics, LT-2600 Vilnius
[2] Vilnius Gediminas Technical University, LT-2040 Vilnius
关键词
Central limit theorem; Independent random variables; L[!sub]p[!/sub] norm; Lower bound; m-dependent random variables;
D O I
10.1023/A:1012814731068
中图分类号
学科分类号
摘要
We derive lower bounds for Lp norms Δnp, 1 ≤ p ≤ ∞, in the central limit theorem for independent and m-dependent random variables with finite fifth order absolute moments and for independent and m-dependent identically distributed random variables with fourth order moments. © 2001 Plenum Publishing Corporation.
引用
收藏
页码:292 / 305
页数:13
相关论文
共 24 条
[1]  
Berk K.N., A central limit theorem for m-dependent random variables with unbounded m, Ann. Probab., 1, 2, pp. 352-354, (1973)
[2]  
Bulinskii A.V., Limit Theorems under Conditions of Weak Dependency [in Russian], (1989)
[3]  
Diananda P.H., The central limit theorem for m-dependent variables, Proc. Cambridge Philos. Soc., 51, 1, pp. 92-95, (1955)
[4]  
Egorov V.A., Some limit theorems for m-dependent random variables, Liet Matem. Rink., 10, 1, pp. 51-59, (1970)
[5]  
Erickson R.V., On an L<sub>p</sub> version of the Berry-Esséen theorem for independent and m-dependent random variables, Ann. Probab., 1, 3, pp. 497-503, (1973)
[6]  
Erickson R.V., L<sub>1</sub> bounds for asymptotic normality of m-dependent sums using Stein's technique, Ann. Probab., 2, 3, pp. 522-529, (1974)
[7]  
Hall P., Rates of Convergence in the Central Limit Theorem, (1982)
[8]  
Hall P., Barbour A.D., Reversing the Berry-Esséen inequality, Proc. Amer. Math. Soc., 90, 1, pp. 107-110, (1984)
[9]  
Heinrich L., A method for the derivation of limit theorems for sums of m-dependent random variables, Z. Wahrsch. Verw. Geb., 60, 4, pp. 501-515, (1982)
[10]  
Heinrich L., Non-uniform estimates, moderate and large deviations in the central limit theorem for m-dependent random variables, Math. Nachr., 121, pp. 107-121, (1985)