An improved Harris Hawks optimization for Bayesian network structure learning via genetic operators

被引:0
|
作者
Haoran Liu
Yanbin Cai
Qianrui Shi
Niantai Wang
Liyue Zhang
Sheng Li
Shaopeng Cui
机构
[1] Yanshan University,School of Information Science and Engineering
[2] Yanshan University,The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province
来源
Soft Computing | 2023年 / 27卷
关键词
Bayesian network; Structure learning; Harris hawks optimization; Genetic algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
Constructing Bayesian network structures from data is an NP-hard problem. This paper presents a novel method for Bayesian network structure learning using a discrete Harris hawks optimization algorithm, named BNC-HHO. It uses the max-min parents and children algorithm, V-structure & log-likelihood function, and neighborhood structures to limit the search space during the initialization phase. Then, the Harris hawk optimization algorithm is extended from the continuous to the discrete domain by redefining the movement strategies of hawks using genetic operators in genetic algorithm. The crossover and mutation operations in the proposed method are controlled by an adaptive crossover and mutation rate based on the X-conditional cloud. To balance the exploration and exploitation phases, a nonlinear escaping energy curve is also designed. Finally, the quality of the solution is further improved using a local optimizer. Experiments on various standard networks demonstrate that the proposed algorithm can quickly get higher structure scores and better convergence accuracy in most cases compared to other state-of-the-art algorithms. It indicates that the proposed algorithm can be used as an effective and feasible method for learning Bayesian network structures.
引用
收藏
页码:14659 / 14672
页数:13
相关论文
共 50 条
  • [31] Optimized Extreme Learning Machine by an Improved Harris Hawks Optimization Algorithm for Mine Fire Flame Recognition
    Juan Nan
    Jian Wang
    Hao Wu
    Kun Li
    Mining, Metallurgy & Exploration, 2023, 40 : 367 - 388
  • [32] Improved Harris hawks optimization for non-convex function optimization and design optimization problems
    Kang, Helei
    Liu, Renyun
    Yao, Yifei
    Yu, Fanhua
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 204 : 619 - 639
  • [33] Dynamic Bayesian network structure learning based on an improved bacterial foraging optimization algorithm
    Meng, Guanglei
    Cong, Zelin
    Li, Tingting
    Wang, Chenguang
    Zhou, Mingzhe
    Wang, Biao
    SCIENTIFIC REPORTS, 2024, 14 (01) : 8266
  • [34] A Bayesian Network Structure Hybrid Learning Algorithm Based on Improved Butterfly Optimization Algorithm
    Mao, Ying
    Gao, Jingpeng
    Sun, Qian
    2022 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY (ICMMT), 2022,
  • [35] Harris Hawks optimization based hybrid deep learning model for efficient network slicing in 5G network
    Dangi, Ramraj
    Lalwani, Praveen
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (01): : 395 - 409
  • [36] Harris Hawks optimization based hybrid deep learning model for efficient network slicing in 5G network
    Ramraj Dangi
    Praveen Lalwani
    Cluster Computing, 2024, 27 : 395 - 409
  • [37] An Improved Lower Bound for Bayesian Network Structure Learning
    Fan, Xiannian
    Yuan, Changhe
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 3526 - 3532
  • [38] A Novel Improved Binary Harris Hawks Optimization For High dimensionality Feature Selection
    Lahmar, Ines
    Zaier, Aida
    Yahia, Mohamed
    Boaullegue, Ridha
    PATTERN RECOGNITION LETTERS, 2023, 171 : 170 - 176
  • [39] Improved Harris Hawks Optimization with Hybrid Deep Learning Based Heating and Cooling Load Prediction on residential buildings
    Kavitha, R. J.
    Thiagarajan, C.
    Priya, P. Indira
    Anand, A. Vivek
    Al-Ammar, Essam A.
    Santhamoorthy, Madhappan
    Chandramohan, P.
    CHEMOSPHERE, 2022, 309
  • [40] An improved Chaotic Harris Hawks Optimizer for solving numerical and engineering optimization problems
    Dinesh Dhawale
    Vikram Kumar Kamboj
    Priyanka Anand
    Engineering with Computers, 2023, 39 : 1183 - 1228