The Brunn-Minkowski inequality in spaces with bitriangular laws of composition

被引:0
作者
Bobkov S.G. [1 ]
机构
[1] University of Minnesota, Minneapolis, MN 55455
关键词
Convex Body; Heisenberg Group; Isoperimetric Inequality; Minkowski Inequality; Isoperimetric Problem;
D O I
10.1007/s10958-011-0580-7
中图分类号
学科分类号
摘要
The Brunn-Minkowski inequality and Prékopa-Leindler's theorem are considered with respect to bitriangular laws of composition on Euclidean spaces Rn. The result is illustrated by an example of the Heisenberg group Hn. Bibliography: 11 titles. © 2011 Springer Science+Business Media, Inc.
引用
收藏
页码:2 / 6
页数:4
相关论文
共 11 条
[1]  
Burago Y.D., Zalgaller V.A., Geometric Inequalities, (1988)
[2]  
Monti R., Brunn-Minkowski and isoperimetric inequality in the Heisenberg group, Ann. Acad. Sci. Fenn. Math., 28, 1, pp. 99-109, (2003)
[3]  
Leonardi G.P., Masnou S., On the isoperimetric problem in the Heisenberg group H<sup>n</sup>, Ann. Mat. Pura Appl. (4), 184, 4, pp. 533-553, (2005)
[4]  
Knothe H., Contributions to the theory of convex bodies, Michigan Math. J., 4, pp. 39-52, (1957)
[5]  
Bobkov S.G., Large deviations via transference plans, Adv. Math. Res., 2, pp. 151-175, (2003)
[6]  
Bobkov S.G., Large deviations and isoperimetry over convex probability measures with heavy tails, Electron. J. Probab., 12, pp. 1072-1100, (2007)
[7]  
Prekopa A., Logarithmic concave measures with applications to stochastic programming, Acta Sci. Math. (Szeged), 32, pp. 301-316, (1971)
[8]  
Prekopa A., On logarithmic concave measures and functions, Acta Sci. Math. (Szeged), 34, pp. 335-343, (1973)
[9]  
Leindler L., On a certain converse of Hölder's inequality. II, Acta Sci. Math. (Szeged), 33, 3-4, pp. 217-223, (1972)
[10]  
Pisier G., The Volume of Convex Bodies and Banach Space Geometry, (1989)