Eigenvalue Clusters of Large Tetradiagonal Toeplitz Matrices

被引:0
|
作者
Albrecht Böttcher
Juanita Gasca
Sergei M. Grudsky
Anatoli V. Kozak
机构
[1] Fakultät für Mathematik,
[2] TU Chemnitz,undefined
[3] Departamento de Matemáticas,undefined
[4] Departamento de Matemáticas,undefined
[5] Regional Mathematical Center of the Southern Federal University,undefined
来源
Integral Equations and Operator Theory | 2021年 / 93卷
关键词
Toeplitz matrix; Tetradiagonal matrix; Eigenvalue cluster; Limiting set; Primary 47B35; Secondary 15A18; 15B05; 65F15;
D O I
暂无
中图分类号
学科分类号
摘要
Toeplitz matrices are typically non-Hermitian and hence they evade the well-elaborated machinery one can employ in the Hermitian case. In a pioneering paper of 1960, Palle Schmidt and Frank Spitzer showed that the eigenvalues of large banded Toeplitz matrices cluster along a certain limiting set which is the union of finitely many closed analytic arcs. Finding this limiting set nevertheless remains a challenge. We here present an algorithm in the spirit of Richard Beam and Robert Warming that reduces testing O(N2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(N^2)$$\end{document} points in the plane for membership in the limiting set by testing only O(N) points along a one-dimensional curve. For tetradiagonal Toeplitz matrices, we describe all types of the limiting sets, we classify their exceptional points, and we establish asymptotic formulas for the analytic arcs near their endpoints.
引用
收藏
相关论文
共 50 条
  • [31] Companion matrices and their relations to Toeplitz and Hankel matrices
    Luo, Yousong
    Hill, Robin
    SPECIAL MATRICES, 2015, 3 (01): : 214 - 226
  • [32] A note on inversion of Toeplitz matrices
    Lv, Xiao-Guang
    Huang, Ting-Zhu
    APPLIED MATHEMATICS LETTERS, 2007, 20 (12) : 1189 - 1193
  • [33] Deconvolution and Regularization with Toeplitz Matrices
    Per Christian Hansen
    Numerical Algorithms, 2002, 29 : 323 - 378
  • [34] A geometric mean for Toeplitz and Toeplitz-block block-Toeplitz matrices
    Nobari, Elham
    Kakavandi, Bijan Ahmadi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 548 : 189 - 202
  • [35] Toeplitz and Hankel matrices on Cn
    Yoshino, T
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2001, 41 (01) : 115 - 122
  • [36] Permutability of Toeplitz and Hankel matrices
    Chugunov, V. N.
    Ikramov, Kh. D.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 467 : 226 - 242
  • [37] Infinite extensions of Toeplitz matrices
    Al’pin Y.A.
    Il’in S.N.
    Journal of Mathematical Sciences, 2005, 127 (3) : 1957 - 1961
  • [38] Orthogonal Symmetric Toeplitz Matrices
    Albrecht Böttcher
    Complex Analysis and Operator Theory, 2008, 2 : 285 - 298
  • [39] Orthogonal Symmetric Toeplitz Matrices
    Boettcher, Albrecht
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2008, 2 (02) : 285 - 298
  • [40] Analysis of Toeplitz MDS Matrices
    Sarkar, Sumanta
    Syed, Habeeb
    INFORMATION SECURITY AND PRIVACY, ACISP 2017, PT II, 2017, 10343 : 3 - 18