Eigenvalue Clusters of Large Tetradiagonal Toeplitz Matrices

被引:0
|
作者
Albrecht Böttcher
Juanita Gasca
Sergei M. Grudsky
Anatoli V. Kozak
机构
[1] Fakultät für Mathematik,
[2] TU Chemnitz,undefined
[3] Departamento de Matemáticas,undefined
[4] Departamento de Matemáticas,undefined
[5] Regional Mathematical Center of the Southern Federal University,undefined
来源
Integral Equations and Operator Theory | 2021年 / 93卷
关键词
Toeplitz matrix; Tetradiagonal matrix; Eigenvalue cluster; Limiting set; Primary 47B35; Secondary 15A18; 15B05; 65F15;
D O I
暂无
中图分类号
学科分类号
摘要
Toeplitz matrices are typically non-Hermitian and hence they evade the well-elaborated machinery one can employ in the Hermitian case. In a pioneering paper of 1960, Palle Schmidt and Frank Spitzer showed that the eigenvalues of large banded Toeplitz matrices cluster along a certain limiting set which is the union of finitely many closed analytic arcs. Finding this limiting set nevertheless remains a challenge. We here present an algorithm in the spirit of Richard Beam and Robert Warming that reduces testing O(N2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(N^2)$$\end{document} points in the plane for membership in the limiting set by testing only O(N) points along a one-dimensional curve. For tetradiagonal Toeplitz matrices, we describe all types of the limiting sets, we classify their exceptional points, and we establish asymptotic formulas for the analytic arcs near their endpoints.
引用
收藏
相关论文
共 50 条
  • [21] Normal Toeplitz matrices
    Farenick, DR
    Krupnik, M
    Krupnik, N
    Lee, WY
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1996, 17 (04) : 1037 - 1043
  • [22] Sharp minimax tests for large Toeplitz covariance matrices with repeated observations
    Butucea, Cristina
    Zgheib, Rania
    JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 146 : 164 - 176
  • [23] Spectral norm of random large dimensional noncentral Toeplitz and Hankel matrices
    Bose, Arup
    Sen, Arnab
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2007, 12 : 29 - 35
  • [24] FAST NON-HERMITIAN TOEPLITZ EIGENVALUE COMPUTATIONS, JOINING MATRIXLESS ALGORITHMS AND FDE APPROXIMATION MATRICES
    Bogoya, Manuel
    Grudsky, Sergei M.
    Serra-capizzano, Stefano
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2024, 45 (01) : 284 - 305
  • [25] Perturbed Toeplitz Matrices and Their LU-Decompositions
    Wenchang Chu
    Emrah Kılıç
    Mathematical Notes, 2023, 113 : 39 - 48
  • [26] Perturbed Toeplitz Matrices and Their LU-Decompositions
    Chu, Wenchang
    Kilic, Emrah
    MATHEMATICAL NOTES, 2023, 113 (1-2) : 39 - 48
  • [27] Toeplitz matrices are unitarily similar to symmetric matrices
    Chien, Mao-Ting
    Liu, Jianzhen
    Nakazato, Hiroshi
    Tam, Tin-Yau
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (10) : 2131 - 2144
  • [28] NONCIRCULANT TOEPLITZ MATRICES ALL OF WHOSE POWERS ARE TOEPLITZ
    Griffin, Kent
    Stuart, Jeffrey L.
    Tsatsomeros, Michael J.
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2008, 58 (04) : 1185 - 1193
  • [29] Infinite limitedly-toeplitz extensions of Toeplitz matrices
    Il'in S.N.
    Journal of Mathematical Sciences, 2006, 132 (2) : 160 - 165
  • [30] Noncirculant Toeplitz matrices all of whose powers are Toeplitz
    Kent Griffin
    Jeffrey L. Stuart
    Michael J. Tsatsomeros
    Czechoslovak Mathematical Journal, 2008, 58 : 1185 - 1193