Greedy Strategies for Convex Optimization

被引:0
作者
Hao Nguyen
Guergana Petrova
机构
[1] WorldQuant LLC,Department of Mathematics
[2] Texas A&M University,undefined
来源
Calcolo | 2017年 / 54卷
关键词
Greedy algorithms; Convex optimization; Rates of convergence; 65K05; 90C25; 41A46;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate two greedy strategies for finding an approximation to the minimum of a convex function E defined on a Hilbert space H. We prove convergence rates for these algorithms under suitable conditions on the objective function E. These conditions involve the behavior of the modulus of smoothness and the modulus of uniform convexity of E.
引用
收藏
页码:207 / 224
页数:17
相关论文
共 23 条
  • [1] Borwein J(2009)Uniformly convex functions on Banach Spaces Proc. Am. Math. Soc. 137 1081-1091
  • [2] Guiro A(2005)Decoding by linear programming IEEE Trans. Inf. Theory 51 4203-4215
  • [3] Hajek P(1996)Some remarks on greedy algorithms Adv. Comput. Math. 5 173-187
  • [4] Vanderwerff J(2006)Compressed sensing IEEE Trans. Inf. Theory 52 1289-1306
  • [5] Candes E(1993)Matching pursuits with time-frequency dictionaries IEEE Trans. Signal Process. 41 3397-3415
  • [6] Tao T(2014)Deterministic and stochastic primal-dual subgradient algorithms for uniformly convex minimization Stoch. Syst. 4 1-37
  • [7] DeVore R(2010)Trading accuracy for sparsity in optimization problems with sparsity constraints SIAM J. Optim. 20 2807-2832
  • [8] Temlyakov V(2014)Greedy expansions in convex optimization Proc. Steklov Inst. Math. 284 244-262
  • [9] Donoho D(2015)Greedy approximation in convex optimization Constr. Approx. 41 269-296
  • [10] Mallat S(2011)Greedy algorithms for structurally constrained high dimensional problems Adv. Neural Inform. Process. Syst. (NIPS) 24 882-890