Generalized translation hypersurfaces in conformally flat spaces

被引:0
|
作者
P. A. Sousa
B. P. Lima
B. V. M. Vieira
机构
[1] Universidade Federal do Piauí,Departamento de Matemática
来源
Journal of Geometry | 2022年 / 113卷
关键词
Conformally flat space; Generalized translation hypersurface; Mean curvature; Primary 53A07; 53C42; Secondary 30F45;
D O I
暂无
中图分类号
学科分类号
摘要
The graph of a real function f defined in some open set of the Euclidean space of dimension (p+q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p+q)$$\end{document} is said to be a generalized translation graph (GTG) if f may be expressed as the sum of two independent functions ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} and ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document} defined in open sets of the Euclidean spaces of dimension p and q, respectively. In this work, we study the geometry of GTG immersed in Euclidean space equipped with a metric conformal to Euclidean metric and obtain results that characterize such hypersurfaces. Applying the characterization results, and using ODE solving techniques, we build examples of GTG satisfying geometric properties not valid in relation to the Euclidean metric.
引用
收藏
相关论文
共 46 条
  • [21] On Helicoidal Surfaces in a Conformally Flat 3-Space
    Chul Woo Lee
    Jae Won Lee
    Dae Won Yoon
    Mediterranean Journal of Mathematics, 2017, 14
  • [22] HELICOIDAL MINIMAL SURFACES IN A CONFORMALLY FLAT 3-SPACE
    Araujo, Kellcio Oliveira
    Cui, Ningwei
    Pina, Romildo da Silva
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (02) : 531 - 540
  • [23] On affine translation hypersurfaces of constant mean curvature
    Sun, HF
    Chen, C
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2004, 64 (3-4): : 381 - 390
  • [24] On 4-dimensional, conformally flat, almost ε-Kahlerian manifolds
    Olszak, Karina
    Olszak, Zbigniew
    JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (05) : 1108 - 1113
  • [25] Geometric characterizations of canal hypersurfaces in Euclidean spaces
    Kazan, Ahmet
    Altin, Mustafa
    Yoon, Dae Won
    FILOMAT, 2023, 37 (18) : 5909 - 5920
  • [26] GENERALIZED RAYCHAUDHURI'S EQUATION FOR NULL HYPERSURFACES
    Massamba, Fortune
    Ssekajja, Samuel
    MATEMATICKI VESNIK, 2018, 70 (01): : 79 - 88
  • [27] Some classifications of Weingarten translation hypersurfaces in Euclidean space
    Yang, Dan
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2018, 61 (01): : 107 - 115
  • [28] On the angle of complete CMC hypersurfaces in Riemannian product spaces
    Aquino, Cicero P.
    de Lima, Henrique F.
    Lima, Eraldo A., Jr.
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2014, 33 : 139 - 148
  • [29] Constant mean curvature hypersurfaces in warped product spaces
    Alias, Luis J.
    Dajczer, Marcos
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2007, 50 : 511 - 526
  • [30] Translation hypersurfaces whose curvature depends partially on its variables
    Ruiz-Hernandez, Gabriel
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 497 (02)