Pullback Attractors of Nonautonomous and Stochastic Multivalued Dynamical Systems

被引:0
作者
T. Caraballo
J. A. Langa
V. S. Melnik
J. Valero
机构
[1] Universidad de Sevilla,Departamento de Ecuaciones Diferenciales y Análisis Numérico
[2] Institute of Applied System Analysis,undefined
[3] Universidad Cardenal Herrera CEU,undefined
[4] Comissari 3,undefined
来源
Set-Valued Analysis | 2003年 / 11卷
关键词
attractor; asymptotic behaviour; differential inclusion; reaction–diffusion equation; nonautonomous dynamical system;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the existence of pullback global attractors for multivalued processes generated by differential inclusions. First, we define multivalued dynamical processes, prove abstract results on the existence of ω-limit sets and global attractors, and study their topological properties (compactness, connectedness). Further, we apply the abstract results to nonautonomous differential inclusions of the reaction–diffusion type in which the forcing term can grow polynomially in time, and to stochastic differential inclusions as well.
引用
收藏
页码:153 / 201
页数:48
相关论文
共 32 条
[1]  
Caraballo T.(2001)Global attractors for multivalued random semiflows generated by random differential inclusions with additive noise C.R. Acad. Sci. Paris Sér. I 331 131-136
[2]  
Langa J. A.(2002)Global attractors for multivalued random dynamical systems Nonlinear Anal. 48 805-829
[3]  
Valero J.(2001)Global attractors for multivalued random dynamical systems generated by random differential inclusions with multiplicative noise J. Math. Anal. Appl. 260 602-622
[4]  
Caraballo T.(1994)Attractors of nonautonomous dynamical systems and their dimension J. Math. Pures Appl. 73 279-333
[5]  
Langa J. A.(1994)Attractors for random dynamical systems Probab. Theory Related Fields 100 365-393
[6]  
Valero J.(1997)Random attractors J. Dynamics Differential Equations 9 307-341
[7]  
Caraballo T.(1987)Existence theorems for nonlinear evolution equations Nonlinear Anal. 11 1193-1206
[8]  
Langa J. A.(2000)Attractors of multivalued semiflows generated by differential inclusions and their approximations Abstr. Appl. Anal. 5 33-46
[9]  
Valero J.(1997)Non-autonomous systems, cocycle attractors and variable time-step discretization Numer. Algorithms 14 141-152
[10]  
Chepyzhov V. V.(1998)Asymptotic behaviour of nonautonomous difference inclusions Systems Control Lett. 33 275-280