Optimal Continuous Dependence Estimates for Fractional Degenerate Parabolic Equations

被引:0
作者
Nathaël Alibaud
Simone Cifani
Espen R. Jakobsen
机构
[1] Université de Franche-Comté,UMR CNRS 6623
[2] Prince of Songkla University,Department of Mathematics and Statistics, Faculty of Science
[3] Norwegian University of Science and Technology (NTNU),Department of Mathematics
[4] Norwegian University of Science and Technology (NTNU),Department of Mathematics
来源
Archive for Rational Mechanics and Analysis | 2014年 / 213卷
关键词
Continuous Dependence; Entropy Solution; Entropy Inequality; Degenerate Parabolic Equation; Weak Entropy Solution;
D O I
暂无
中图分类号
学科分类号
摘要
We derive continuous dependence estimates for weak entropy solutions of degenerate parabolic equations with nonlinear fractional diffusion. The diffusion term involves the fractional Laplace operator, ▵α/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\triangle^{\alpha/2}}$$\end{document} for α∈(0,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha \in (0,2)}$$\end{document}. Our results are quantitative and we exhibit an example for which they are optimal. We cover the dependence on the nonlinearities, and for the first time, the Lipschitz dependence on α in the BV-framework. The former estimate (dependence on nonlinearity) is robust in the sense that it is stable in the limits α↓0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha \downarrow 0}$$\end{document} and α↑2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha \uparrow 2}$$\end{document}. In the limit α↑2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha \uparrow 2}$$\end{document}, ▵α/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\triangle^{\alpha/2}}$$\end{document} converges to the usual Laplacian, and we show rigorously that we recover the optimal continuous dependence result of Cockburn and Gripenberg (J Differ Equ 151(2):231–251, 1999) for local degenerate parabolic equations (thus providing an alternative proof).
引用
收藏
页码:705 / 762
页数:57
相关论文
共 84 条
  • [1] Alibaud N.(2007)Entropy formulation for fractal conservation laws J. Evol. Equ. 7 145-175
  • [2] Alibaud N.(2010)Non-uniqueness of weak solutions for the fractal Burgers equation Ann. Inst. H. Poincaré Anal. Non Linéaire 27 997-1016
  • [3] Andreianov B.(2012)Continuous dependence estimates for nonlinear fractional convection-diffusion equations SIAM J. Math. Anal. 44 603-632
  • [4] Alibaud N.(2007)Occurence and non-appearance of shocks in fractal Burgers equation J. Hyperb. Differ. Equ 4 479-499
  • [5] Cifani S.(2009)Well-posedness results for triply nonlinear degenerate parabolic equations J. Differ. Equ. 247 277-302
  • [6] Jakobsen E.R.(1998)Fractal Burgers Equations J. Differ. Equ. 148 9-46
  • [7] Alibaud N.(2011)Fractal porous medium equation C. R. Acad. Sci. Paris, Ser. I 349 641-645
  • [8] Droniou J.(2010)A nonlinear diffusion of dislocation density and self-similar solutions Commun. Math. Physics 294 145-168
  • [9] Vovelle J.(1998)Kružkov’s estimates for scalar conservation laws revisited Trans. Am. Math. Soc 7 2847-2870
  • [10] Andreianov N.(1979)Uniqueness of solutions of the initial–value problem for $${u_t-\triangle \varphi(u)=0}$$ u t - ▵ φ ( u ) = 0 J. Math. Pures Appl. (9) 58 153-163