Some existence and uniqueness results for logistic Choquard equations

被引:0
|
作者
G. C. Anthal
J. Giacomoni
K. Sreenadh
机构
[1] Indian Institute of Technology,Department of Mathematics
[2] Delhi,LMAP (UMR E2S UPPA CNRS 5142) Bat. IPRA
[3] Avenue de l’Université,undefined
来源
Rendiconti del Circolo Matematico di Palermo Series 2 | 2022年 / 71卷
关键词
Fractional ; -Laplacian; Logistic equation; Choquard nonlinearity; Hardy-Littlewood-Sobolev inequality; Sign-changing solutions; 35J60; 35B45; 35B65;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the following doubly nonlocal nonlinear logistic problem driven by the fractional p-Laplacian (-Δ)psu=f(x,u)-∫Ω|u(y)|r|x-y|αdy|u(x)|r-2u(x)inΩ,u=0inRN\Ω.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (-\Delta )_p^su = f(x,u) -\displaystyle \left( \int \limits _\Omega \frac{|u(y)|^r}{|x-y|^\alpha }dy\right) |u(x)|^{r-2}u(x)~\text { in }~ \Omega , ~u=0 ~\text { in }~ {{\mathbb {R}}}^N\setminus \Omega . \end{aligned}$$\end{document}Here Ω⊂RN(N≥2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Omega \subset {{\mathbb {R}}}^N(N\ge 2)$$\end{document} is a bounded domain with C1,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C^{1,1}$$\end{document} boundary ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega $$\end{document}, s∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ s \in (0,1) $$\end{document}, p∈(1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \in (1,\infty )$$\end{document} are such that ps<N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ps < N$$\end{document}. Also ps,α#≤r<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{s,\alpha }^\#\le r<\infty $$\end{document}, where ps,α#=(2N-α)/2N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{s,\alpha }^\#=(2N-\alpha )/2N$$\end{document}. Under suitable and general assumptions on the nonlinearity f, we study the existence, nonexistence, uniqueness, and regularity of weak solutions. As for applications, we treat cases of subdiffusive type logistic Choquard problem. We also consider in the superdiffusive case the Brezis-Nirenberg type problem with logistic Choquard and show the existence of a nontrivial solution for a suitable choice of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}. Finally for a particular choice of f viz. f(x,t)=λtq-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x,t)=\lambda t^{q-1}$$\end{document} with 1<p<2r<q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<2r<q$$\end{document}, we show the existence of at least one energy nodal solution.
引用
收藏
页码:997 / 1034
页数:37
相关论文
共 50 条
  • [31] Uniqueness and existence results for implicit impulsive differential equations
    Heikkilä, S
    Kumpulainen, M
    Seikkala, S
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 42 (01) : 13 - 26
  • [32] Existence and uniqueness results for the bending elastic beam equations
    Li, Yongxiang
    Gao, Yabing
    APPLIED MATHEMATICS LETTERS, 2019, 95 : 72 - 77
  • [33] New Existence and Uniqueness Results for Fractional Differential Equations
    Anber, Ahmed
    Belarbi, Soumia
    Dahmani, Zoubir
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2013, 21 (03): : 33 - 41
  • [34] Some existence results for critical nonlocal Choquard equation on the Heisenberg group
    Bai, Shujie
    Song, Yueqiang
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 127
  • [35] The existence of least energy nodal solutions for some class of Kirchhoff equations and Choquard equations in RN
    Ye, Hongyu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 431 (02) : 935 - 954
  • [36] Some Existence, Uniqueness And Stability Results Of Nonlocal Random Impulsive Integro-Differential Equations
    Jose, Sayooj Aby
    Yukunthorn, Weera
    Valdes, Juan Eduardo Napoles
    Leiva, Hugo
    APPLIED MATHEMATICS E-NOTES, 2020, 20 : 481 - 492
  • [37] Some existence and uniqueness results for impulsive functional differential equations with variable times in Frechet spaces
    Graef, John R.
    Ouahab, Abdelghani
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2007, 14 (01): : 27 - 45
  • [38] Uniqueness and existence of positive solutions for degenerate logistic type elliptic equations on RN
    Dong, Wei
    Liu, Lishan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (04) : 1226 - 1235
  • [39] SOME RESULTS ON EXISTENCE AND UNIQUENESS OF SOLUTIONS OF NONLINEAR NETWORKS
    FUJISAWA, T
    KUH, ES
    IEEE TRANSACTIONS ON CIRCUIT THEORY, 1971, CT18 (05): : 501 - &
  • [40] Existence and uniqueness of ground states for p-Choquard model
    Georgiev, Vladimir
    Tarulli, Mirko
    Venkov, George
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 179 : 131 - 145