Positive Solutions for Second–Order m–Point Boundary Value Problems on Time Scales

被引:0
作者
Wan Tong Li
Hong Rui Sun
机构
[1] Lanzhou University,School of Mathematics and Statistics
来源
Acta Mathematica Sinica | 2006年 / 22卷
关键词
time scales; positive solution; Schauder fixed point theorem; 34B15; 39A10;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Bbb T}$$\end{document} be a time scale such that 0, T ∈ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Bbb T}$$\end{document}. By means of the Schauder fixed point theorem and analysis method, we establish some existence criteria for positive solutions of the m–point boundary value problem on time scales \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \begin{array}{*{20}c} {{u^{{\Delta \nabla }} {\left( t \right)} + a{\left( t \right)}f{\left( {u{\left( t \right)}} \right)} = 0,t \in {\left( {0,T} \right)},}} & {{\beta u{\left( 0 \right)} - \gamma u^{\Delta } {\left( 0 \right)},u{\left( T \right)} - {\sum\limits_{i = 1}^{m - 2} {a_{i} u{\left( {\xi _{i} } \right)}} } = b,m \geqslant 3,}} \\ \end{array} $$\end{document} where a ∈ Cld ((0, T), [0,∞)), f ∈ Cld ([0,∞) × [0,∞), [0,∞)), β, γ ∈ [0,∞), ξi ∈ (0, ρ(T)), b, ai ∈ (0,∞) (for i = 1, . . . ,m− 2) are given constants satisfying some suitable hypotheses. We show that this problem has at least one positive solution for sufficiently small b > 0 and no solution for sufficiently large b. Our results are new even for the corresponding differential equation (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Bbb T}$$\end{document} = ℝ) and difference equation (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Bbb T}$$\end{document} = ℤ).
引用
收藏
页码:1797 / 1804
页数:7
相关论文
共 17 条
[1]  
Hilger undefined(1990)undefined Results Math. 18 18-undefined
[2]  
Atici undefined(2002)undefined J. Comput. Appl. Math. 141 75-undefined
[3]  
Ma undefined(2001)undefined Appl. Math. Lett. 14 1-undefined
[4]  
Guo undefined(2003)undefined J. Comput. Appl. Math. 151 415-undefined
[5]  
Anderson undefined(2003)undefined Dynamic Systems and Applications 12 393-undefined
[6]  
Anderson undefined(2004)undefined Appl. Math. Lett. 17 1053-undefined
[7]  
DaCunha undefined(2004)undefined J. Math. Anal. Appl. 295 378-undefined
[8]  
Eggensperger undefined(2004)undefined J. Differential Equations 2004 1-undefined
[9]  
Erbe undefined(1999)undefined Dynam. Contin. Discrete Impuls. Systems 6 121-undefined
[10]  
Henderson undefined(2000)undefined J. Differ. Equations Appl. 6 417-undefined