The Removable Edges and the Contractible Subgraphs of 5-Connected Graphs

被引:0
|
作者
Chengfu Qin
Xiaofeng Guo
Kiyoshi Ando
机构
[1] Guangxi Teachers Education University,School of Mathematics Science
[2] Xiamen University,Department of Mathematics
[3] The University of Electro-Communications,Department of Information and Communication Engineering
来源
Graphs and Combinatorics | 2015年 / 31卷
关键词
5-connected graph; Contractible subgraph; Removable edge; Minor minimal; 05C40;
D O I
暂无
中图分类号
学科分类号
摘要
An edge of a k-connected graph G is said to be k-removable if G − e is still k-connected. A subgraph H of a k-connected graph is said to be k-contractible if its contraction, that is, identification every component of H to a single vertex, results again a k-connected graph. In this paper, we show that there is either a removable edge or a contractible subgraph in a 5-connected graph which contains an edge with both endvertices have degree more than five. Thus every edge of minor minimal 5-connected graph is incident to at least one vertex of degree 5.
引用
收藏
页码:243 / 254
页数:11
相关论文
共 28 条
  • [21] Removable edges in a cycle of a 4-connected graph
    Wu, JC
    Li, XL
    Wang, LS
    DISCRETE MATHEMATICS, 2004, 287 (1-3) : 103 - 111
  • [22] The number of removable edges in a 4-connected graph
    Wu, HC
    Li, XL
    Su, JJ
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2004, 92 (01) : 13 - 40
  • [23] Removable Edges in Cycles of a k-Connected Graph
    Xu, Li Qiong
    Guo, Xiao Feng
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (04) : 781 - 788
  • [24] Removable edges in cycles of a k-connected graph
    Li Qiong Xu
    Xiao Feng Guo
    Acta Mathematica Sinica, English Series, 2011, 27 : 781 - 788
  • [25] Removable Edges in a Spanning Tree of a k-connected Graph
    Li-qiong XU
    Acta Mathematicae Applicatae Sinica, 2013, (04) : 823 - 828
  • [26] Removable edges in a spanning tree of a k-connected graph
    Li-qiong Xu
    Acta Mathematicae Applicatae Sinica, English Series, 2013, 29 : 823 - 828
  • [27] Removable Edges in a Spanning Tree of a k-connected Graph
    Xu, Li-qiong
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2013, 29 (04): : 823 - 828
  • [28] REMOVABLE EDGES ON A HAMILTON CYCLE OR OUTSIDE A CYCLE IN A 4-CONNECTED GRAPH
    Wu, Jichang
    Broersma, Hajo
    Mao, Yaping
    Ma, Qin
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (02) : 559 - 587