Traveling Wave Solutions in a Nonlocal Dispersal SIR Epidemic Model with General Nonlinear Incidence

被引:0
|
作者
Weixin Wu
Zhidong Teng
机构
[1] Xinjiang University,College of Mathematics and Systems Science
来源
Acta Applicandae Mathematicae | 2021年 / 175卷
关键词
Nonlocal dispersal; SIR epidemic model; Nonlinear incidence; Minimal wave speed; Traveling wave solution;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, for a class of nonlocal dispersal SIR epidemic models with nonlinear incidence, we study the existence of traveling waves connecting the disease-free equilibrium with endemic equilibrium. We obtain that the existence of traveling waves depends on the minimal wave speed c∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c^{*}$\end{document} and basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}_{0}$\end{document}. That is, if R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}_{0}>1$\end{document} and c>c∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c> c^{*}$\end{document} then the model has a traveling wave connecting the disease-free equilibrium with endemic equilibrium. Otherwise, if R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}_{0}>1$\end{document} and 0<c<c∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0< c< c^{*}$\end{document}, then there does not exist the traveling wave connecting the disease-free equilibrium with endemic equilibrium. The numerical simulations verify the theoretical results. Our results improve and generalize some known results.
引用
收藏
相关论文
共 50 条
  • [41] TRAVELING WAVE SOLUTIONS FOR THE NONLOCAL DISPERSAL COMPETITION SYSTEM WITH STAGE STRUCTURE
    Lv, Di-kang
    Wang, Jia-bing
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, : 2514 - 2538
  • [42] A DELAYED SIR EPIDEMIC MODEL WITH GENERAL INCIDENCE RATE
    Hattaf, Khalid
    Lashari, Abid Ali
    Louartassi, Younes
    Yousfi, Noura
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2013, (03) : 1 - 9
  • [43] Periodic wave propagation in a diffusive SIR epidemic model with nonlinear incidence and periodic environment
    Wu, Weixin
    Teng, Zhidong
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (12)
  • [44] TRAVELING WAVES AND ENTIRE SOLUTIONS FOR AN EPIDEMIC MODEL WITH ASYMMETRIC DISPERSAL
    Li, Wan-Tong
    Xu, Wen-Bing
    Zhang, Li
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (05) : 2483 - 2512
  • [45] Traveling waves of a nonlocal dispersal Kermack–McKendrick epidemic model with delayed transmission
    Hongmei Cheng
    Rong Yuan
    Journal of Evolution Equations, 2017, 17 : 979 - 1002
  • [46] Traveling waves for a nonlocal dispersal SIR model with renewal and spatio-temporal delay
    Yang, Yun-Rui
    Yang, Yang
    Ma, Zhu-Yan
    APPLICABLE ANALYSIS, 2023, 102 (04) : 1038 - 1058
  • [47] Asymptotic profiles of a nonlocal dispersal SIS epidemic model with saturated incidence
    Feng, Yan-Xia
    Li, Wan-Tong
    Yang, Fei-Ying
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024,
  • [48] Spatial Dynamics of a Nonlocal Dispersal SIR Epidemic Model with Recruitment in Time Heterogeneous Media
    Zhao, Xu-Dong
    Li, Wan-Tong
    Bao, Xiongxiong
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2025,
  • [49] TRAVELING WAVE SOLUTIONS FOR A DIFFUSIVE SIS EPIDEMIC MODEL
    Ding, Wei
    Huang, Wenzhang
    Kansakar, Siroj
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (05): : 1291 - 1304
  • [50] A fractional order SIR epidemic model with nonlinear incidence rate
    Abderrahim Mouaouine
    Adnane Boukhouima
    Khalid Hattaf
    Noura Yousfi
    Advances in Difference Equations, 2018