Traveling Wave Solutions in a Nonlocal Dispersal SIR Epidemic Model with General Nonlinear Incidence

被引:0
|
作者
Weixin Wu
Zhidong Teng
机构
[1] Xinjiang University,College of Mathematics and Systems Science
来源
Acta Applicandae Mathematicae | 2021年 / 175卷
关键词
Nonlocal dispersal; SIR epidemic model; Nonlinear incidence; Minimal wave speed; Traveling wave solution;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, for a class of nonlocal dispersal SIR epidemic models with nonlinear incidence, we study the existence of traveling waves connecting the disease-free equilibrium with endemic equilibrium. We obtain that the existence of traveling waves depends on the minimal wave speed c∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c^{*}$\end{document} and basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}_{0}$\end{document}. That is, if R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}_{0}>1$\end{document} and c>c∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c> c^{*}$\end{document} then the model has a traveling wave connecting the disease-free equilibrium with endemic equilibrium. Otherwise, if R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}_{0}>1$\end{document} and 0<c<c∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0< c< c^{*}$\end{document}, then there does not exist the traveling wave connecting the disease-free equilibrium with endemic equilibrium. The numerical simulations verify the theoretical results. Our results improve and generalize some known results.
引用
收藏
相关论文
共 50 条
  • [31] GLOBAL STABILITY OF AN SIR EPIDEMIC MODEL WITH DELAY AND GENERAL NONLINEAR INCIDENCE
    McCluskey, C. Connell
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2010, 7 (04) : 837 - 850
  • [32] Traveling wave solutions for a diffusive age-structured SIR epidemic model
    Wu, Shi-Liang
    Chen, Linya
    Hsu, Cheng-Hsiung
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 98
  • [33] Traveling waves in an SEIR epidemic model with a general nonlinear incidence rate
    Wu, Xin
    Tian, Baochuan
    Yuan, Rong
    APPLICABLE ANALYSIS, 2020, 99 (01) : 133 - 157
  • [34] WAVE PHENOMENA IN A COMPARTMENTAL EPIDEMIC MODEL WITH NONLOCAL DISPERSAL AND RELAPSE
    Wang, Jia-Bing
    Qiao, Shao-Xia
    Wu, Chufen
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (05): : 2635 - 2660
  • [35] TRAVELING WAVES IN A NONLOCAL DISPERSAL EPIDEMIC MODEL WITH SPATIO-TEMPORAL DELAY
    Wei, Jingdong
    Zhou, Jiangbo
    Chen, Wenxia
    Zhen, Zaili
    Tian, Lixin
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (05) : 2853 - 2886
  • [36] Traveling wave solutions of a nonlocal dispersal SIRS model with spatio-temporal delay
    Ma, Zhaohai
    Yuan, Rong
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2017, 10 (05)
  • [37] Traveling waves for a nonlocal dispersal SIRS epidemic model with age structure
    Jing, Shiwen
    Lian, Hairong
    Tang, Yiming
    Ma, Zhaohai
    AIMS MATHEMATICS, 2024, 9 (04): : 8001 - 8019
  • [38] Exponential stability of traveling waves in a nonlocal dispersal epidemic model with delay
    Zhang, Guo-Bao
    Li, Yan
    Feng, Zhaosheng
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 344 : 47 - 72
  • [39] TRAVELING WAVES IN A NONLOCAL DISPERSAL KERMACK-MCKENDRICK EPIDEMIC MODEL
    Yang, Fei-Ying
    Li, Yan
    Li, Wan-Tong
    Wang, Zhi-Cheng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (07): : 1969 - 1993
  • [40] Traveling waves for a diffusive mosquito-borne epidemic model with general incidence
    Wang, Kai
    Zhao, Hongyong
    Wang, Hao
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (01):