Traveling Wave Solutions in a Nonlocal Dispersal SIR Epidemic Model with General Nonlinear Incidence

被引:0
|
作者
Weixin Wu
Zhidong Teng
机构
[1] Xinjiang University,College of Mathematics and Systems Science
来源
Acta Applicandae Mathematicae | 2021年 / 175卷
关键词
Nonlocal dispersal; SIR epidemic model; Nonlinear incidence; Minimal wave speed; Traveling wave solution;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, for a class of nonlocal dispersal SIR epidemic models with nonlinear incidence, we study the existence of traveling waves connecting the disease-free equilibrium with endemic equilibrium. We obtain that the existence of traveling waves depends on the minimal wave speed c∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c^{*}$\end{document} and basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}_{0}$\end{document}. That is, if R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}_{0}>1$\end{document} and c>c∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c> c^{*}$\end{document} then the model has a traveling wave connecting the disease-free equilibrium with endemic equilibrium. Otherwise, if R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}_{0}>1$\end{document} and 0<c<c∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0< c< c^{*}$\end{document}, then there does not exist the traveling wave connecting the disease-free equilibrium with endemic equilibrium. The numerical simulations verify the theoretical results. Our results improve and generalize some known results.
引用
收藏
相关论文
共 50 条
  • [21] Traveling wave solutions of a nonlocal dispersal predator–prey model with spatiotemporal delay
    Zhihong Zhao
    Rui Li
    Xiangkui Zhao
    Zhaosheng Feng
    Zeitschrift für angewandte Mathematik und Physik, 2018, 69
  • [22] Invasion traveling wave solutions of a predator-prey model with nonlocal dispersal
    Dong, Fang-Di
    Li, Wan-Tong
    Zhang, Guo-Bao
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 79
  • [23] Traveling waves in a nonlocal dispersal SIR model with nonlocal delayed transmission
    Wang, Jia-Bing
    Li, Wan-Tong
    Yang, Fei-Ying
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 27 (1-3) : 136 - 152
  • [24] Traveling waves for a nonlocal dispersal SIR model with delay and external supplies
    Li, Yan
    Li, Wan-Tong
    Yang, Fei-Ying
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 247 : 723 - 740
  • [25] The spreading speed of an SIR epidemic model with nonlocal dispersal
    Guo, Jong-Shenq
    Poh, Amy Ai Ling
    Shimojo, Masahiko
    ASYMPTOTIC ANALYSIS, 2020, 120 (1-2) : 163 - 174
  • [26] Traveling wave solutions of a nonlocal dispersal predator-prey model with spatiotemporal delay
    Zhao, Zhihong
    Li, Rui
    Zhao, Xiangkui
    Feng, Zhaosheng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (06):
  • [27] Traveling wave solutions for nonlocal dispersal Fisher-KPP model with age structure
    Tian, Xuan
    Guo, Shangjiang
    APPLIED MATHEMATICS LETTERS, 2022, 123
  • [28] Traveling waves for SVIR epidemic model with nonlocal dispersal
    Zhang, Ran
    Liu, Shengqiang
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2019, 16 (03) : 1654 - 1682
  • [29] Wave propagation in a diffusive SEIR epidemic model with nonlocal transmission and a general nonlinear incidence rate
    Wu, Xin
    Ma, Zhaohai
    BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
  • [30] Wave propagation in a diffusive SEIR epidemic model with nonlocal transmission and a general nonlinear incidence rate
    Xin Wu
    Zhaohai Ma
    Boundary Value Problems, 2021