Local Central Limit Theorem for a Random Walk Perturbed in One Point

被引:0
作者
Giuseppe Genovese
Renato Lucà
机构
[1] Universität Zürich,Institut für Mathematik
[2] Universität Basel,Departement Mathematik und Informatik
来源
Mathematical Physics, Analysis and Geometry | 2019年 / 22卷
关键词
Local central limit theorems; Inhomogeneous random walks; 60F05; 60G50; 60J10;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a symmetric random walk on the ν-dimensional lattice, whose exit probability from the origin is modified by an antisymmetric perturbation and prove the local central limit theorem for this process. A short-range correction to diffusive behaviour appears in any dimension along with a long-range correction in the one-dimensional case.
引用
收藏
相关论文
共 8 条
  • [1] Boldrighini C(2015)Weak dependence for a class of local functionals of Markov chains on $\mathbb {Z}^{d}$ℤd Methods Funct. Anal. Topology 21 302-314
  • [2] Marchesiello A(2012)Random walk on $\mathbb {Z}$ℤ with one-point inhomogeneity Markov Proc. Rel. Fields 18 421-440
  • [3] Saffirio C(2001)Limit theorems for general markov chains Siberian Math. J. 42 301-316
  • [4] Boldrighini C(1994)Local limit theorem for a non homogeneous random walk on the lattice Theory Probab. Appl. 39 513-529
  • [5] Pellegrinotti A(undefined)undefined undefined undefined undefined-undefined
  • [6] Korshunov DA(undefined)undefined undefined undefined undefined-undefined
  • [7] Minlos RA(undefined)undefined undefined undefined undefined-undefined
  • [8] Zhizhina EA(undefined)undefined undefined undefined undefined-undefined