On some perturbed q-Laguerre–Hahn orthogonal q-polynomials

被引:0
作者
S. Jbeli
L. Khériji
机构
[1] Université de Tunis El Manar,
[2] Faculté des Sciences de Tunis,undefined
[3] Université de Tunis El Manar,undefined
[4] Institut Préparatoire aux Etudes d’Ingénieur El Manar,undefined
来源
Periodica Mathematica Hungarica | 2023年 / 86卷
关键词
Orthogonal ; -polynomials; -derivative operator; -Laguerre–Hahn character; Regular form; Standard perturbations; Primary 33C45; Secondary 42C05;
D O I
暂无
中图分类号
学科分类号
摘要
Our goal is to study the multiplication by a polynomial of a Hq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_q$$\end{document}-Laguerre–Hahn form and its inverse one where Hq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_q$$\end{document} be the q-derivative operator. The class of the obtained form is discussed in detail in the two cases. Some examples in connection with the Hq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{q}$$\end{document}-semiclassical forms are highlighted.
引用
收藏
页码:115 / 138
页数:23
相关论文
共 39 条
[11]  
Chammam W(2021)Perturbations of Laguerre-Hahn class linear functionals by Dirac delta derivatives Afrika Matematika 32 1147-1157
[12]  
Christoffel EB(2009)Difference equation for the co-recursive rth associated orthogonal polynomials of the Symmetry Integr. Geom. Methods Appl. 71 49-115
[13]  
Dueñas H(2011)-Laguerre-Hahn class Symmetry Integr. Geom. Methods Appl. 10 387-411
[14]  
Marcellán F(2002)On the Christoffel product of a D-Laguerre–Hahn form by a polynomial of one degree Acta Appl. Math. 4 82-103
[15]  
Prianes E(2003)The symmetrical Methods Appl. Anal. 105 109-128
[16]  
Dueñas H(2013)-semiclassical orthogonal polynomials of class one Eurasian Math. J. 21 223-248
[17]  
Garza LE(1999)An introduction to the J. Comput. Appl. Math. 10 395-411
[18]  
Foupouagnigni M(1990)-Laguerre-Hahn orthogonal Period. Math. Hungar. 22 217-231
[19]  
Ronveaux A(2019)-polynomials Adv. Pure Appl. Math. 39 359-376
[20]  
Gharbi KB(2011)The Integr. Trans. Spec. Funct. 10 21-37