On some perturbed q-Laguerre–Hahn orthogonal q-polynomials

被引:0
作者
S. Jbeli
L. Khériji
机构
[1] Université de Tunis El Manar,
[2] Faculté des Sciences de Tunis,undefined
[3] Université de Tunis El Manar,undefined
[4] Institut Préparatoire aux Etudes d’Ingénieur El Manar,undefined
来源
Periodica Mathematica Hungarica | 2023年 / 86卷
关键词
Orthogonal ; -polynomials; -derivative operator; -Laguerre–Hahn character; Regular form; Standard perturbations; Primary 33C45; Secondary 42C05;
D O I
暂无
中图分类号
学科分类号
摘要
Our goal is to study the multiplication by a polynomial of a Hq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_q$$\end{document}-Laguerre–Hahn form and its inverse one where Hq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_q$$\end{document} be the q-derivative operator. The class of the obtained form is discussed in detail in the two cases. Some examples in connection with the Hq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{q}$$\end{document}-semiclassical forms are highlighted.
引用
收藏
页码:115 / 138
页数:23
相关论文
共 39 条
[1]  
Alaya J(1996)Symmetric Laguerre–Hahn forms of class Integ. Trans. Spc. Funct. 2 301-320
[2]  
Maroni P(1996)Some semi-classical and Laguerre–Hahn forms defined by pseudo-functions Methods Appl. Anal. 3 12-30
[3]  
Alaya J(2018)Characterization of the symmetric J. Differ. Equ. Appl. 24 1164-1184
[4]  
Maroni P(2003)-Laguerre–Hahn orthogonal polynomial sequences of even class via the quadratic decomposition Appl. Numer. Math. 44 433-447
[5]  
Ben Gharbi K(2004)Third degree classical forms Linear Algebra Appl. 384 215-242
[6]  
Khériji L(2019)Darboux transformation and perturbation of linear functionals Indian J. Pure Appl. Math. 50 1039-1048
[7]  
Ihsen Tounsi M(1858)Several formulas and identities related to Catalan-Qi and J. Reine Angew. Math. 55 61-82
[8]  
Ben Salah I(2009)-Catalan-Qi numbers Integr. Trans. Spec. Funct. 20 59-77
[9]  
Bueno MI(2012)Über die Gaussische Quadratur und eine Verallgemeinerung derselben Bol. Mat. 19 65-90
[10]  
Marcellán F(2003)Perturbations of Laguerre-Hahn functional modification by the derivative of a Dirac delta J. Comput. Appl. Math. 153 213-223