Research on triazine-based nitrogen-doped porous carbon/Pebax mixed-matrix membranes for CO2 separation and its gas transport mechanism

被引:0
|
作者
Li, Peilin [1 ,2 ]
Ma, Wenzhong [1 ,2 ]
Zhong, Jing [2 ]
Pan, Yang [2 ]
Ren, Xiuxiu [2 ]
Guo, Meng [2 ]
Wu, Nanhua [2 ]
Matsuyama, Hideto [3 ]
机构
[1] Changzhou Univ, Sch Mat Sci & Engn, Jiangsu Key Lab Environm Friendly Polymer Mat, Changzhou 213164, Jiangsu, Peoples R China
[2] Changzhou Univ, Sch Petrochem Engn, Jiangsu Key Lab Adv Catalyt Mat & Technol, Changzhou 213164, Jiangsu, Peoples R China
[3] Kobe Univ, Res Ctr Membrane & Film Technol, Dept Chem Sci & Engn, 1-1 Rokkodai, Nada-Ku, Kobe 6578501, Japan
关键词
Triazine-based NPC; Pebax; mixed-matrix membrane; CO2; separation; METAL-ORGANIC FRAMEWORK; SIMULTANEOUS ENHANCEMENT; PERFORMANCE; POLYMERS; CARBONS;
D O I
10.1007/s11051-024-06015-1
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nitrogen-doped porous carbon (NPC) has a rich microporous structure and nitrogen-rich units, and its nitrogen-containing group can interact strongly with the PEO chain segment of Pebax, synergistically improving its CO2 adsorption ability and interface compatibility. This work prepared three types of triazine-based NPCs with mesoporous and high N-content and added NPCs to Pebax-2533 to prepare NPC/Pebax-2533 MMMs. The effects of N-type, N-content, and pore structure of NPCs on the gas separation performance of MMMs were studied. Constructing a continuous meso-microporous structure within the membrane and adding alkaline N-containing groups were beneficial for promoting rapid CO2 transport. Among the three NPCs, NPC-1/Pebax MMMs prepared using NPC-1 with the highest N-content (10.91%) and suitable pore structure exhibited the best gas separation performance. To investigate the gas transport mechanism of NPC in MMMs, NPC-1 was added to Pebax-2533 and Pebax-1657. The permeability of 3NPC-1/Pebax-2533 MMMs and 0.5NPC-1/Pebax-1657 MMMs reached 423 Barrer and 178 Barrer, with a CO2/N-2 selectivity of 61 and 75.8, respectively, both higher than the Pebax-2533 and Pebax-1657. Adding NPC-1 to Pebax-2533 and Pebax-1657 increased the solubility and diffusivity coefficient of MMMs by 40 similar to 80%, and the gas separation performance did not rapidly decrease after long-term stability of 120 h (15%CO2/N-2). Compared with NPC-1/Pebax-1657 MMMs, NPC-1/Pebax-2533 MMMs had higher CO2 permeability, mechanical properties, solubility, and diffusivity coefficient. The above results indicated that NPC was more suitable for Pebax-2533.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Influence of functionalized SiO2 nanoparticles on the morphology and CO2/CH4 separation efficiency of Pebax-based mixed-matrix membranes
    Maryam Ariazadeh
    Zahra Farashi
    Navid Azizi
    Mohammad Khajouei
    Korean Journal of Chemical Engineering, 2020, 37 : 295 - 306
  • [32] Effect of COK-12 mesoporous silica modified with CO2-philic groups on Pebax-based mixed-matrix membranes for CO2/CH4 mixed-gas separation
    Castruita-de Leon, Griselda
    Chavarria-Molina, Juan Francisco
    Farias-Cepeda, Lorena
    Alvarado-Tenorio, German
    Garcia-Cerda, Luis Alfonso
    POLYMER BULLETIN, 2025,
  • [33] Synthesis of a nitrogen-doped porous carbon monolith and its use for CO2 capture
    Qian, Dan
    Hao, Guang-Ping
    Li, Wen-Cui
    Xinxing Tan Cailiao/New Carbon Materials, 2013, 28 (04): : 267 - 272
  • [34] Synthesis of a nitrogen-doped porous carbon monolith and its use for CO2 capture
    Qian Dan
    Hao Guang-ping
    Li Wen-cui
    NEW CARBON MATERIALS, 2013, 28 (04) : 267 - 272
  • [35] Porous covalent triazine piperazine polymer (CTPP)/PEBAX mixed matrix membranes for CO2/N2 and CO2/CH4 separations
    Thankamony, Roshni L.
    Li, Xiang
    Das, Swapan K.
    Ostwal, Mayur M.
    Lai, Zhiping
    JOURNAL OF MEMBRANE SCIENCE, 2019, 591
  • [36] Study on the CO2 Capture Separation Process by Temperature Swing Adsorption Based on Nitrogen-Doped Porous Carbon
    Du, Jun
    Zheng, Shiyu
    Ren, Fan
    Guo, Jing
    Chu, Xu
    ENERGY & FUELS, 2023, 37 (17) : 13151 - 13163
  • [37] Facile synthesis of porous, nitrogen-doped adsorption/diffusion carbonaceous membranes for efficient CO2 separation
    Zhu, Xiang
    Chai, Songhai
    Tian, Chengcheng
    Fulvio, Pasquale
    Han, Kee Sung
    Hagaman, Edward W.
    Veith, Gabriel M.
    Mahurin, Shannon M.
    Brown, Suree
    Liu, Honglai
    Dai, Sheng
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [38] Mixed-Matrix Composite Membranes Based on UiO-66-Derived MOFs for CO2 Separation
    Molavi, Hossein
    Shojaei, Akbar
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (09) : 9448 - 9461
  • [39] Highly permselective Pebax/MWCNTs mixed matrix membranes for CO2/N2 separation
    Jiang, Yu
    Zhang, Bing
    Zheng, Yingfei
    Wu, Yonghong
    POLYMER BULLETIN, 2024, 81 (11) : 9699 - 9719
  • [40] Triazine-based 2D covalent organic framework-derived nitrogen-doped porous carbon for supercapacitor electrode
    Stella Vargheese
    Muthu Dinesh
    K. V. Kavya
    Dhanaprabhu Pattappan
    Ramasamy Thangavelu Rajendra Kumar
    Yuvaraj Haldorai
    Carbon Letters, 2021, 31 : 879 - 886