Compositions into Powers of b: Asymptotic Enumeration and Parameters

被引:0
作者
Daniel Krenn
Stephan Wagner
机构
[1] Graz University of Technology,Institute of Analysis and Computational Number Theory (Math A)
[2] Stellenbosch University,Department of Mathematical Sciences
来源
Algorithmica | 2016年 / 75卷
关键词
Compositions; Powers of 2; Infinite transfer matrices; Asymptotic enumeration;
D O I
暂无
中图分类号
学科分类号
摘要
For a fixed integer base b≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\ge 2$$\end{document}, we consider the number of compositions of 1 into a given number of powers of b and, related, the maximum number of representations a positive integer can have as an ordered sum of powers of b. We study the asymptotic growth of those numbers and give precise asymptotic formulae for them, thereby improving on earlier results of Molteni. Our approach uses generating functions, which we obtain from infinite transfer matrices. With the same techniques the distribution of the largest denominator and the number of distinct parts are investigated.
引用
收藏
页码:606 / 631
页数:25
相关论文
共 26 条
[1]  
Boyd DW(1975)The asymptotic number of solutions of a diophantine equation from coding theory J. Combin. Theory Ser. A 18 210-215
[2]  
de Bruijn NG(1948)On Mahler’s partition problem Nederl. Akad. Wetensch. Proc. 51 659-669
[3]  
Eaves RE(1970)A sufficient condition for the convergence of an infinite determinant SIAM J. Appl. Math. 18 652-657
[4]  
Elsholtz C(2013)The number of Huffman codes, compact trees, and sums of unit fractions IEEE Trans. Inf. Theory 59 1065-1075
[5]  
Heuberger C(1990)Singularity analysis of generating functions SIAM J. Discrete Math. 3 216-240
[6]  
Prodinger H(1987)Level number sequences for trees Discrete Math. 65 149-156
[7]  
Flajolet P(2013)Representation of a 2-power as sum of J. Number Theory 133 1251-1261
[8]  
Odlyzko A(1998) 2-powers: a recursive formula Ann. Appl. Probab. 8 163-181
[9]  
Flajolet P(1998)Large deviations of combinatorial distributions. II. Local limit theorems Eur. J. Combin. 19 329-343
[10]  
Prodinger H(1966)On convergence rates in the central limit theorems for combinatorial structures Fibonacci Q. 4 117-128