Discrete Variational Optimal Control

被引:0
作者
Fernando Jiménez
Marin Kobilarov
David Martín de Diego
机构
[1] CSIC-UAM-UC3M-UCM,Instituto de Ciencias Matemáticas
[2] Johns Hopkins University,undefined
来源
Journal of Nonlinear Science | 2013年 / 23卷
关键词
Variational integrators; Optimal control; Lie group; Discontinuous control inputs; Nonholonomic systems; Reduced control system; 70Q05; 49J15; 37M15; 70H03; 37J60;
D O I
暂无
中图分类号
学科分类号
摘要
This paper develops numerical methods for optimal control of mechanical systems in the Lagrangian setting. It extends the theory of discrete mechanics to enable the solutions of optimal control problems through the discretization of variational principles. The key point is to solve the optimal control problem as a variational integrator of a specially constructed higher dimensional system. The developed framework applies to systems on tangent bundles, Lie groups, and underactuated and nonholonomic systems with symmetries, and can approximate either smooth or discontinuous control inputs. The resulting methods inherit the preservation properties of variational integrators and result in numerically robust and easily implementable algorithms. Several theoretical examples and a practical one, the control of an underwater vehicle, illustrate the application of the proposed approach.
引用
收藏
页码:393 / 426
页数:33
相关论文
共 50 条
  • [1] Bloch A.M.(1996)Nonholonomic mechanical systems with symmetry Arch. Ration. Mech. Anal. 136 21-99
  • [2] Krishnaprasad P.S.(2009)Geometric structure-preserving optimal control of a rigid body J. Dyn. Control Syst. 15 307-330
  • [3] Marsden J.E.(1999)Discrete Lagrangian reduction, discrete Euler–Poincaré equations and semidirect products Lett. Math. Phys. 49 79-93
  • [4] Murray R.(2009)Hamilton–Pontryagin integrators on Lie groups: introduction and structure-preserving properties Found. Comput. Math. 9 197-219
  • [5] Bloch A.M.(2008)Momentum and energy preserving integrators for nonholonomic dynamics Nonlinearity 21 1911-1928
  • [6] Hussein I.(2008)Discrete nonholonomic Lagrangian systems on Lie groupoids J. Nonlinear Sci. 18 221-276
  • [7] Leok M.(2005)Lie-group methods Acta Numer. 9 215-365
  • [8] Sanyal A.K.(2011)Discrete geometric optimal control on Lie groups IEEE Trans. Robot. 27 641-655
  • [9] Bobenko A.I.(2010)Geometric discretization of nonholonomic systems with symmetries Discrete Contin. Dyn. Syst., Ser. S 3 61-84
  • [10] Suris Y.B.(2010)Simulating nonholonomic dynamics Bol. Soc. Esp. Mat. Apl. 50 61-81