Kähler groups, R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}$$\end{document}-trees, and holomorphic families of riemann surfaces

被引:0
作者
Thomas Delzant
机构
[1] Université de Strasbourg et CNRS,IRMA
关键词
Riemann Surface; Fundamental Group; Hyperbolic Space; Limit Group; Ahler Manifold;
D O I
10.1007/s00039-016-0355-x
中图分类号
学科分类号
摘要
Let X be a compact Kähler manifold, and g a fixed genus. Due to the work of Parshin and Arakelov, it is known that there are only a finite number of non isotrivial holomorphic families of Riemann surfaces of genus g⩾2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${g \geqslant 2}$$\end{document} over X. We prove that this number only depends on the fundamental group of X. Our approach uses geometric group theory (limit groups, R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}$$\end{document}-trees, the asymptotic geometry of the mapping class group), and Gromov-Shoen theory. We prove that in many important cases limit groups (in the sense of Sela) associated to infinite sequences of actions of a Kähler group on a Gromov-hyperbolic space are surface groups and we apply this result to monodromy groups acting on complexes of curves.
引用
收藏
页码:160 / 187
页数:27
相关论文
共 23 条
[1]  
Arakelov S.J.(1971)Families of algebraic curves with fixed degeneracies Izv. Akad. Nauk SSSR Ser. Mat. 35 1269-1293
[2]  
Bestvina M.(1988)Degeneration of the hyperbolic space Duke Mathematical Journal 56 143-146
[3]  
Bowditch B.H.(2008)Tight geodesics in the curve complex Inventiones mathematicae 171 281-300
[4]  
Caporaso L.(2002)On certain uniformity properties of curves over function fields Compositio Mathematica 130 1-19
[5]  
Corlette K.(2008)On the classification of rank 2 representations of quasi-projective fundamental groups Compositio Mathematica 144 1271-1331
[6]  
Simpson C.(2008)Trees, valuations and the Green-Lazarsfeld set Geometric and Functional Analysis 18 1236-1250
[7]  
Delzant T.(2010)L’invariant de Bieri Neumann Strebel des groupes fondamentaux des variétés kähleriennes Mathematische Annalen 348 119-125
[8]  
Delzant T.(2008)Courbure mésoscopique et théorie de la toute petite simplification Journal of Topology 1 804-836
[9]  
Delzant T.(1992)Harmonic maps into singular spaces and p-adic super rigidity for lattices in groups of rank one Publications Mathématiques de l’IHÉS 76 165-246
[10]  
Gromov M.(1997)Global existence Theorems for harmonic maps to non locally compacts spaces Communications in Analysis and Geometry 5 333-387