Von Neumann algebra description of inflationary cosmology

被引:0
作者
Min-Seok Seo
机构
[1] Korea National University of Education,Department of Physics Education
来源
The European Physical Journal C | / 83卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study the von Neumann algebra description of the inflationary quasi-de Sitter (dS) space. Unlike perfect dS space, quasi-dS space allows the nonzero energy flux across the horizon, which can be identified with the expectation value of the static time translation generator. Moreover, as a dS isometry associated with the static time translation is spontaneously broken, the fluctuation in time is accumulated, which induces the fluctuation in the energy flux. When the inflationary period is given by (ϵHH)-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\epsilon _H H)^{-1}$$\end{document} where ϵH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _H$$\end{document} is the slow-roll parameter measuring the increasing rate of the Hubble radius, both the energy flux and its fluctuation diverge in the G→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G \rightarrow 0$$\end{document} limit. Taking the fluctuation in the energy flux and that in the observer’s energy into account, we argue that the inflationary quasi-dS space is described by Type II∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_\infty $$\end{document} algebra. As the entropy is not bounded from above, this is different from Type II1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_1$$\end{document} description of perfect dS space in which the entropy is maximized by the maximal entanglement. We also show that our result is consistent with the observation that the von Neumann entropy for the density matrix reflecting the fluctuations above is interpreted as the generalized entropy.
引用
收藏
相关论文
共 62 条
[1]  
Gibbons GW(1977)undefined Phys. Rev. D 15 2738-2751
[2]  
Hawking SW(1964)undefined Prog. Theor. Phys. 32 956-184
[3]  
Araki H(2022)undefined JHEP 10 008-134
[4]  
Witten E(2007)undefined JHEP 05 055-2203
[5]  
Arkani-Hamed N(2019)undefined JHEP 11 075-496
[6]  
Dubovsky S(2019)undefined Phys. Lett. B 788 180-400
[7]  
Nicolis A(2019)undefined JHEP 11 016-339
[8]  
Trincherini E(2019)undefined JCAP 08 009-178
[9]  
Villadoro G(1976)undefined Phys. Rev. D 14 870-undefined
[10]  
Garg SK(2019)undefined JHEP 11 136-undefined