The evolution of information entropy components in relativistic heavy-ion collisions

被引:0
作者
Fei Li
Gang Chen
机构
[1] China University of Geosciences (Wuhan),School of mathematics and physics
来源
The European Physical Journal A | 2020年 / 56卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The time evolution process of thermodynamic entropy Sthermal\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\mathrm{thermal}}$$\end{document}, multiplicity entropy Smul\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\mathrm{mul}}$$\end{document}, and configuration entropy Sconf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\mathrm{conf}}$$\end{document} at the relativistic heavy-ion collisions is studied using the AMPT model to generate central Au + Au collision events. By superimposing the three kinds of information entropy, we can get a complete information entropy of the system to describe the physical process of the relativistic heavy-ion collisions. The results show that the four stages of the time evolution process of the system entropy S seem to correspond to the four physical processes in the relativistic heavy-ion collision, indicating that the total entropy of the system can reflect the physical information more accurately in the relativistic heavy-ion collision. This also shows that Shannon information entropy does provides an effective tool to study the evolution process in the relativistic heavy-ion collisions.
引用
收藏
相关论文
共 94 条
  • [21] Wang S-S(2006)undefined Phys. Rev. C 73 034905-undefined
  • [22] Wei H-L(2010)undefined Nucl. Phys. A 834 237c-undefined
  • [23] Ma Y-G(1998)undefined Phys. Rev. Lett. 81 53-undefined
  • [24] Cao X-G(2018)undefined Entropy 20 633-undefined
  • [25] Xu J(2003)undefined Phys. A Stat. Mech. Appl. 320 371-undefined
  • [26] Ko CM(2017)undefined AIP Conf. Proc. 1853 080001-undefined
  • [27] Csernai L(2013)undefined Eur. Phys. J. A 49 110-undefined
  • [28] Spinnangr S(undefined)undefined undefined undefined undefined-undefined
  • [29] Velle S(undefined)undefined undefined undefined undefined-undefined
  • [30] Lichtenberg DB(undefined)undefined undefined undefined undefined-undefined