The time evolution process of thermodynamic entropy Sthermal\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$S_{\mathrm{thermal}}$$\end{document}, multiplicity entropy Smul\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$S_{\mathrm{mul}}$$\end{document}, and configuration entropy Sconf\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$S_{\mathrm{conf}}$$\end{document} at the relativistic heavy-ion collisions is studied using the AMPT model to generate central Au + Au collision events. By superimposing the three kinds of information entropy, we can get a complete information entropy of the system to describe the physical process of the relativistic heavy-ion collisions. The results show that the four stages of the time evolution process of the system entropy S seem to correspond to the four physical processes in the relativistic heavy-ion collision, indicating that the total entropy of the system can reflect the physical information more accurately in the relativistic heavy-ion collision. This also shows that Shannon information entropy does provides an effective tool to study the evolution process in the relativistic heavy-ion collisions.