The evolution of information entropy components in relativistic heavy-ion collisions

被引:0
作者
Fei Li
Gang Chen
机构
[1] China University of Geosciences (Wuhan),School of mathematics and physics
来源
The European Physical Journal A | 2020年 / 56卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The time evolution process of thermodynamic entropy Sthermal\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\mathrm{thermal}}$$\end{document}, multiplicity entropy Smul\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\mathrm{mul}}$$\end{document}, and configuration entropy Sconf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\mathrm{conf}}$$\end{document} at the relativistic heavy-ion collisions is studied using the AMPT model to generate central Au + Au collision events. By superimposing the three kinds of information entropy, we can get a complete information entropy of the system to describe the physical process of the relativistic heavy-ion collisions. The results show that the four stages of the time evolution process of the system entropy S seem to correspond to the four physical processes in the relativistic heavy-ion collision, indicating that the total entropy of the system can reflect the physical information more accurately in the relativistic heavy-ion collision. This also shows that Shannon information entropy does provides an effective tool to study the evolution process in the relativistic heavy-ion collisions.
引用
收藏
相关论文
共 94 条
  • [1] Turko L(2018)undefined Universe 4 52-386
  • [2] Werner K(2001)undefined J. Phys. G: Nucl. Part. Phys. 27 625-undefined
  • [3] Jaynes ET(1965)undefined Am. J. Phys. 33 391-undefined
  • [4] Shannon CE(1948)undefined Bell Syst. Tech. J. 27 379-undefined
  • [5] Csernai L(1986)undefined Phys. Rep. 131 223-undefined
  • [6] Kapusta JI(2018)undefined Progr. Part. Nucl. Phys. 99 120-undefined
  • [7] Ma C-W(1996)undefined Phys. Rev. D 53 6608-undefined
  • [8] Ma Y-G(1999)undefined Phys. Rev. Lett. 83 3617-undefined
  • [9] Cao Z(2015)undefined Phys. Lett. B 742 19-undefined
  • [10] Hwa RC(2016)undefined J. Phys. G Nucl. Part. Phys. 43 045102-undefined