Gradient Estimates and Harnack Inequality for a Nonlinear Parabolic Equation on Complete Manifolds

被引:2
作者
Wu J. [1 ]
Yang Y.-H. [2 ]
机构
[1] Department of Mathematics, Tongji University, Shanghai
[2] Department of Mathematics, Shanghai Jiao Tong University, Shanghai
基金
中国国家自然科学基金;
关键词
Gradient estimate; Harnack inequality; Nonlinear parabolic equation; Ricci curvature;
D O I
10.1007/s40304-014-0026-x
中图分类号
学科分类号
摘要
Let M be a noncompact complete Riemannian manifold. In this paper, we consider the following nonlinear parabolic equation on Mut Ut (x, t) = Δu(x, t) + au(x, t) ln u(x, t) + buα(x, t)..We prove a Li–Yau type gradient estimate for positive solutions to the above equation; as an application, we also derive the corresponding Harnack inequality. These results generalize the corresponding ones proved by Li (J Funct Anal 100:233–256, 1991). © 2014, School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:437 / 464
页数:27
相关论文
共 8 条
[1]  
Calabi E., An extension of E. Hopf’s maximum principle with an application to Riemannian goemetry, Duke Math. J., 25, pp. 45-56, (1958)
[2]  
Cheng S.Y., Yau S.T., Differential equations on Riemannian manifolds and their geometric applications, Commun. Pure Appl. Math., 28, pp. 333-354, (1975)
[3]  
Gidas B., Spruck J., Global and local behavior of positive solutions of nonlinear elliptic equations, Commun. Pure Appl. Math., 34, pp. 525-598, (1981)
[4]  
Hamilton R., Three-manifolds with positive Ricci curvature, J. Differ. Geom., 17, pp. 255-306, (1982)
[5]  
Li P., Yau S.T., On the parabolic kernel of the Schrodinger operator, Acta Math., 156, pp. 153-201, (1986)
[6]  
Li J., Gradient estimate and Harnack inequalities for nonlinear parabolic and nonlinear elliptic equations on Riemannian manifolds, J. Funct. Anal., 100, pp. 233-256, (1991)
[7]  
Ma L., Gradient estimates for a simple elliptic equation on complete non-compact manifolds, J. Funct. Anal., 241, pp. 374-382, (2006)
[8]  
Yang Y., Gradient estimate for a nonlinear parabolic equation on Riemannian manifold, Proc. Am. Math. Soc., 136, pp. 4095-4102, (2008)