On the Stability of the Boundary of the Feasible Set in Linear Optimization

被引:0
作者
Miguel A. Goberna
Mercedes Larriqueta
Virginia N. Vera de Serio
机构
[1] Universidad de Alicante,Departamento de Estadística e Investigación Operativa
[2] Universidad Nacional de Cuyo,Facultad de Ingeniería
[3] Universidad Nacional de Cuyo,Facultad de Ciencias Económicas
来源
Set-Valued Analysis | 2003年 / 11卷
关键词
stability; linear programming; feasible set mapping; boundary;
D O I
暂无
中图分类号
学科分类号
摘要
This paper analizes the relationship between the stability properties of the closed convex sets in finite dimensions and the stability properties of their corresponding boundaries. We consider a given closed convex set represented by a certain linear inequality system σ whose coefficients can be arbitrarily perturbed, and we measure the size of these perturbations by means of the pseudometric of the uniform convergence. It is shown that the feasible set mapping is Berge lower semicontinuous at σ if and only if the boundary mapping satisfies the same property. Moreover, if the boundary mapping is semicontinuous in any sense (lower or upper; Berge or Hausdorff) at σ, then it is also closed at σ. All the mentioned stability properties are equivalent when the feasible set is a convex body.
引用
收藏
页码:203 / 223
页数:20
相关论文
共 61 条
[1]  
Auslender A.(1988)Global regularity theorems Math. Oper. Res. 13 243-253
[2]  
Crouzeix J.-P.(1984)Parametric semi-infinite linear programming I. Continuity of the feasible set and the optimal value Math. Programming Study 21 18-42
[3]  
Brosowski B.(2002)Upper semicontinuity of the feasible set mapping for linear inequality systems Set-Valued Anal. 10 361-378
[4]  
Cánovas M. J.(2001)Solving strategies and well-posedness in linear semi-infinite programming Ann. Oper. Res. 101 171-190
[5]  
López M. A.(1986)Necessary conditions for upper semicontinuity in parametric semi-infinite programming J. Optim. Theory Appl. 48 65-79
[6]  
Parra J.(1973)On perturbations in systems of linear inequalities SIAM J. Numer. Anal. 10 299-307
[7]  
Cánovas M. J.(1975)Remarks on perturbations in linear inequalities SIAM J. Numer. Anal. 12 770-772
[8]  
López M. A.(1999)Analytical linear inequality systems and optimization J. Optim. Theory Appl. 103 95-119
[9]  
Parra J.(1996)Topological stability of linear semi-infinite inequality systems J. Optim. Theory Appl. 89 227-236
[10]  
Todorov M. I.(1996)Stability theory for linear inequality systems SIAM J. Matrix Anal. Appl. 17 730-743