We prove that every hypercyclic weighted composition operator acting on the space of smooth functions on the real line is already frequently hypercyclic. Moreover, for a given frequently hypercyclic weighted composition operator Cw,ψ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C_{w,\psi }$$\end{document} we show that C∞(R)=FHC(Cw,ψ)+FHC(Cw,ψ)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C^\infty ({\mathbb {R}})=FHC(C_{w,\psi })+FHC(C_{w,\psi })$$\end{document} and that FHC(Cw,ψ)∪{0}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$FHC(C_{w,\psi })\cup \{0\}$$\end{document} contains a closed infinite dimensional subspace.