Frequent hypercyclicity of weighted composition operators on the space of smooth functions

被引:0
|
作者
Krzysztof Piszczek
Adam Przestacki
机构
[1] Adam Mickiewicz University,Faculty of Mathematics and Computer Science
关键词
Linear dynamics; (Space of)smooth functions; Hypercyclicity; Weighted composition operator; Primary 47B33; Secondary 47A16; 46E10;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that every hypercyclic weighted composition operator acting on the space of smooth functions on the real line is already frequently hypercyclic. Moreover, for a given frequently hypercyclic weighted composition operator Cw,ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{w,\psi }$$\end{document} we show that C∞(R)=FHC(Cw,ψ)+FHC(Cw,ψ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^\infty ({\mathbb {R}})=FHC(C_{w,\psi })+FHC(C_{w,\psi })$$\end{document} and that FHC(Cw,ψ)∪{0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$FHC(C_{w,\psi })\cup \{0\}$$\end{document} contains a closed infinite dimensional subspace.
引用
收藏
相关论文
共 50 条
  • [21] Chaos and frequent hypercyclicity for weighted shifts
    Charpentier, Stephane
    Grosse-Erdmann, Karl
    Menet, Quentin
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2021, 41 (12) : 3634 - 3670
  • [22] Characterization of hypercyclic weighted composition operators on the space of holomorphic functions
    Golinski, Michal
    Przestacki , Adam
    ANNALES POLONICI MATHEMATICI, 2021, 127 (03) : 211 - 231
  • [23] Weighted composition operators on spaces of functions with derivative in a Hardy space
    Contreras, MD
    Hernández-Díaz, AG
    JOURNAL OF OPERATOR THEORY, 2004, 52 (01) : 173 - 184
  • [24] Weighted composition operators on spaces of functions with derivative in a Bergman space
    Huayou Xie
    Junming Liu
    Yutian Wu
    Annals of Functional Analysis, 2021, 12
  • [25] Hypercyclicity of operators that λ-commute with the differentiation operator on the space of entire functions
    Zohra Bensaid, Ikram Fatima
    Gonzalez, Manuel
    Leon-Saavedra, Fernando
    Romero de la Rosa, Maria Pilar
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 282 (08)
  • [26] Weighted composition operators on spaces of functions with derivative in a Bergman space
    Xie, Huayou
    Liu, Junming
    Wu, Yutian
    ANNALS OF FUNCTIONAL ANALYSIS, 2021, 12 (02)
  • [27] q-FREQUENT HYPERCYCLICITY IN AN ALGEBRA OF OPERATORS
    Heo, Jaeseong
    Kim, Eunsang
    Kim, Seong Wook
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (02) : 443 - 454
  • [28] q-Frequent hypercyclicity in spaces of operators
    Manjul Gupta
    Aneesh Mundayadan
    Monatshefte für Mathematik, 2017, 183 : 251 - 268
  • [29] q-Frequent hypercyclicity in spaces of operators
    Gupta, Manjul
    Mundayadan, Aneesh
    MONATSHEFTE FUR MATHEMATIK, 2017, 183 (02): : 251 - 268
  • [30] Spectrum of weighted composition operators part IV spectrum and essential spectra of weighted composition operators in spaces of smooth functions on [0, 1]
    A. K. Kitover
    Positivity, 2017, 21 : 989 - 1014