Curvature bounds for the spectrum of a compact Riemannian manifold of constant scalar curvature

被引:0
|
作者
Sharief Deshmukh
Afifah Al-Eid
机构
[1] King Saud University,Department of Mathematics
来源
The Journal of Geometric Analysis | 2005年 / 15卷
关键词
53C20; 58G25; 53B25; 53C20; 53C40; Scalar curvature; lower bounds of eigenvalues; isometric to a sphere;
D O I
暂无
中图分类号
学科分类号
摘要
Let (M, g) be an n-dimensional compact and connected Riemannian manifold of constant scalar curvature. If the sectional curvatures of M are bounded below by a constant α > 0, and the Ricci curvature satisfies Ric < (n − 1)αδ, δ ≥ 1, then it is shown that either M is isometric to the n-sphere Sn(α) or else each nonzero eigenvalue λ of the Laplacian acting on the smooth functions of M satisfies the following:\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\lambda ^2 + 3n\alpha (\delta - 2)\lambda + 2n\alpha ^2 \delta (1 + (n - 1)\delta ) > 0$$ \end{document}.
引用
收藏
页码:589 / 606
页数:17
相关论文
共 50 条