Impulsive stochastic fractional differential equations driven by fractional Brownian motion

被引:0
作者
Mahmoud Abouagwa
Feifei Cheng
Ji Li
机构
[1] Cairo University,Department of Mathematical Statistics, Faculty of Graduate Studies for Statistical Research
[2] Huazhong University of Science and Technology,School of Mathematics and Statistics
来源
Advances in Difference Equations | / 2020卷
关键词
Impulsive stochastic differential equations; Existence and uniqueness; Fractional calculus; Fractional Brownian motion; 34A37; 60H10; 60G22;
D O I
暂无
中图分类号
学科分类号
摘要
In this research, we study the existence and uniqueness results for a new class of stochastic fractional differential equations with impulses driven by a standard Brownian motion and an independent fractional Brownian motion with Hurst index 1/2<H<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1/2< H<1$\end{document} under a non-Lipschitz condition with the Lipschitz one as a particular case. Our analysis depends on an approximation scheme of Carathéodory type. Some previous results are improved and extended.
引用
收藏
相关论文
共 81 条
[71]  
Salahshour S.(undefined)undefined undefined undefined undefined-undefined
[72]  
Ahmadian A.(undefined)undefined undefined undefined undefined-undefined
[73]  
Senu N.(undefined)undefined undefined undefined undefined-undefined
[74]  
Baleanu D.(undefined)undefined undefined undefined undefined-undefined
[75]  
Agarwal P.(undefined)undefined undefined undefined undefined-undefined
[76]  
Taniguchi T.(undefined)undefined undefined undefined undefined-undefined
[77]  
Xu L.(undefined)undefined undefined undefined undefined-undefined
[78]  
Li Z.(undefined)undefined undefined undefined undefined-undefined
[79]  
Xu Y.(undefined)undefined undefined undefined undefined-undefined
[80]  
Pei B.(undefined)undefined undefined undefined undefined-undefined