On the Exponential Diophantine Equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(a^{n}-2)(b^{n}-2)=x^{2}$$\end{document}

被引:0
作者
Z. Şiar
R. Keskin
机构
[1] Bingöl University,
[2] Sakarya University,undefined
关键词
Pell equation; exponential Diophantine equation; Lucas sequence;
D O I
10.1134/S0001434622050248
中图分类号
学科分类号
摘要
引用
收藏
页码:903 / 912
页数:9
相关论文
共 25 条
[1]  
Szalay L.(2000)On the Diophantine equation Publ. Math. Debrecen 57 1-9-145
[2]  
Hajdu L.(2000)On the Diophantine equation Period. Math. Hung. 40 141-175
[3]  
Szalay L.(2002) and Period. Math. Hung. 44 169-6
[4]  
Cohn J. H. E. (2010)The Diophantine equation Publ. Math. Debrecen 77 1-1066
[5]  
Lan L.(2011)On the exponential Diophantine equation Integers 11. 0-93
[6]  
Szalay L.(2011)A Remark on paper of Luca and Walsh J. Math. Research and Exposition 31 1064-173
[7]  
Li Zhao-Jun(2013)A note on the exponential Diophantine equation Period. Math. Hung. 66 87-222
[8]  
Tang M.(2019)A note on the Diophantine equation Proc. Indian Acad. Sci. Math. Sci. 129 Article 69-9
[9]  
Tang M.(2002)A Note on the exponential Diophantine equation Journal N. Theory 96 152-388
[10]  
Xiaoyan G.(2000)The product of like-indexed terms in binary recurrences J. Number Theory 81 48-60-undefined