Some weighted statistical convergence and associated Korovkin and Voronovskaya type theorems

被引:0
作者
Naim L. Braha
H. M. Srivastava
Mikail Et
机构
[1] University of Prishtina,Department of Mathematics and Computer Sciences
[2] University of Victoria,Department of Mathematics and Statistics
[3] China Medical University Hospital,Department of Medical Research
[4] China Medical University,Department of Mathematics
[5] Fırat University,undefined
来源
Journal of Applied Mathematics and Computing | 2021年 / 65卷
关键词
Weighted statistical convergence; Sequence spaces; Korovkin type theorem; Rate of convergence; Voronovskaya type theorem; 40G15; 41A36; 46A35; 46A45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose to investigate a new weighted statistical convergence by applying the Nörlund–Cesáro summability method. Based upon this definition, we prove some properties of statistically convergent sequences and a kind of the Korovkin type theorems. We also study the rate of the convergence for this kind of weighted statistical convergence and a Voronovskaya type theorem.
引用
收藏
页码:429 / 450
页数:21
相关论文
共 63 条
  • [1] Altomare F(2010)Korovkin-type theorems and approximation by positive linear operators Surv. Approx. Theory 5 92-164
  • [2] Altın Y(2004)The sequence space Appl. Math. Comput. 154 423-430
  • [3] Et M(2009) on seminormed spaces Taiwan. J. Math. 13 1189-1196
  • [4] Tripathy BC(2000)On a new class of sequences related to the Demonstr. Math. 33 571-582
  • [5] Altun Y(1970) space defined by Orlicz function Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.) 14 9-13
  • [6] Bilgin T(2013)Some sequence spaces defined by Orlicz functions Acta Math. Hungar. 141 113-26
  • [7] Bhardwaj VK(2018)A note on the approximation of functions in an infinite interval by linear positive operators Bull. Math. Anal. Appl. 10 53-65
  • [8] Singh N(2019)On Quaest. Math. 42 1411-1426
  • [9] Boyanov BD(2015)-strong convergence of numerical sequences and Fourier series Appl. Math. Comput. 266 675-686
  • [10] Veselinov VM(2014)Some properties of new modified Szász–Mirakyan operators in polynomial weight spaces via power summability method Appl. Math. Comput. 228 162-169