Large time and space size behaviour of the heat equation in non-cylindrical domains

被引:0
作者
Senoussi Guesmia
机构
[1] College of Sciences,Mathematics Department
[2] Qassim University,undefined
来源
Archiv der Mathematik | 2013年 / 101卷
关键词
35B35; 35B40; 35R37; 35K20; Asymptotic behaviour; Moving boundary problems; Non-cylindrical domains; Stability; Heat equation;
D O I
暂无
中图分类号
学科分类号
摘要
In this note we consider a linear parabolic problem defined on a non-cylindrical unbounded domain Q. If Ωt denotes the section of Q above t, the Ωt size goes to +∞, when t → +∞, i.e. the sections Ωt become unbounded in some directions when the time t becomes large. Here a model problem is studied, but the technique used can be applied for a wide class of problems, as nonlinear ones, defined on more general domains Q as those introduced by Lions [11]. An asymptotically exponential convergence of the solutions of such problems towards the solution of an elliptic problem defined on a lower dimensional domain is established.
引用
收藏
页码:293 / 299
页数:6
相关论文
共 14 条
[1]  
Benabidallah R.(2001)Global solution and asymptotic behaviour of nonlinear Kirchhoff model in infinitely increasing moving domains Ann. Univ. Ferrara Sez. VII Sci. Mat. 47 207-229
[2]  
Ebobisse F.(1975)Sur un’inequation parabolique dans un ouvert non cylindrique Rend. Sem. Mat. Univ. Padova 53 21-35
[3]  
Biroli M.(2003)On global solvability and asymptotic behaviour of a mixed problem for a nonlinear degenerate Kirchhoff model in moving domains Bull. Belg. Math. Soc. Simon Stevin 10 179-196
[4]  
Cavalcanti M.M.(2008)Exponential rates of convergence by an iteration technique C. R. Math. Acad. Sci. Paris 346 21-26
[5]  
Chipot M.(2001)On the asymptotic behaviour of the solution of parabolic problems in cylindrical domains of large size in some directions Discrete Contin. Dyn. Syst. Ser. B. 1 319-338
[6]  
Yeressian K.(1961)Asymptotic behavior of solutions of parabolic equations of any order Acta math. 106 1-43
[7]  
Chipot M.(2009)Some convergence results for quasilinear parabolic boundary value problems in cylindrical domain of large size Nonlinear Analysis 70 3320-3331
[8]  
Rougirel A.(1972)Stabilization of the solutions of boundary value problems in noncylindrical domains Ukrainian Mathematical Journal 24 396-403
[9]  
Friedman A.(1957)Sur les problemes mixtes pour certains systèmes paraboliques dans les ouverts non cylindriques Ann. Inst. Fourier 7 143-182
[10]  
Guesmia S.(2009)Global existence and stability for a von Karman equations with memory in noncylindrical domains J. Math. Phys. 50 112701-undefined