Antiproximinal convex bounded sets in the space c0(Γ) equipped with the day norm

被引:0
作者
V. S. Balaganskii
机构
[1] Russian Academy of Sciences,Institute of Mathematics and Mechanics, Ural Division
来源
Mathematical Notes | 2006年 / 79卷
关键词
antiproximinal set; Banach space; Gâteaux differentiability; Day norm; the Hahn—Banach theorem; weakly compact set;
D O I
暂无
中图分类号
学科分类号
摘要
We construct a convex smooth antiproximinal set in any infinite-dimensional space c0(Γ) equipped with the Day norm; moreover, the distance function to the set is Gâteaux differentiable at each point of the complement.
引用
收藏
页码:299 / 313
页数:14
相关论文
共 14 条
  • [1] Edelstein M. A.(1970)A note on nearest points Quart. J. Math. 21 403-406
  • [2] Edelstein M. A.(1972)Some results on nearest points and support properties of convex sets in Pacific J. Math. 40 553-560
  • [3] Thompson A. C.(1974)Antiproximinal sets in some Banach spaces Math. Balkanica 4 79-82
  • [4] Cobzaş S.(1975)Convex antiproximinal sets in the spaces Mat. Zametki 17 449-457
  • [5] Kobzash S.(1976) and J. Approximation Theory 18 1-8
  • [6] Edelstein M.(1976)Weakly proximinal sets Revue d’Analyse Numérique et de la Théorie de l’Approximation 5 127-143
  • [7] Cobzaş S.(1978)Antiproximinal sets in Banach spaces of continuous functions Revue d’Analyse Numérique et de la Théorie de l’Approximation 7 141-145
  • [8] Cobzaş S.(1983)Antiproximinal sets in Banach spaces of Mat. Zametki 33 549-558
  • [9] Fonf V. P.(1981)-type Bull. Calcutta Math. Soc. 73 5-8
  • [10] Borwein J. M.(1987)On antiproximinal sets in spaces of continuous functions on bicompact sets J. Approximation Theory 49 252-255