On the Validity of the Definition of Angular Momentum in General Relativity

被引:0
作者
Po-Ning Chen
Lan-Hsuan Huang
Mu-Tao Wang
Shing-Tung Yau
机构
[1] Columbia University,Department of Mathematics
[2] University of Connecticut,Department of Mathematics
[3] Harvard University,Department of Mathematics
来源
Annales Henri Poincaré | 2016年 / 17卷
关键词
Angular Momentum; Fundamental Form; Minkowski Spacetime; Spacelike Hypersurface; Coordinate Chart;
D O I
暂无
中图分类号
学科分类号
摘要
We exam the validity of the definition of the ADM angular momentum without the parity assumption. Explicit examples of asymptotically flat hypersurfaces in the Minkowski spacetime with zero ADM energy–momentum vector and finite non-zero angular momentum vector are presented. We also discuss the Beig–Ó Murchadha–Regge–Teitelboim center of mass and study analogous examples in the Schwarzschild spacetime.
引用
收藏
页码:253 / 270
页数:17
相关论文
共 25 条
[1]  
Ashtekar A.(1978)A unified treatment of null and spatial infinity in general relativity. I. Universal structure, asymptotic symmetries, and conserved quantities at spatial infinity J. Math. Phys. 19 1542-1566
[2]  
Hansen R. O.(1986)The mass of an asymptotically flat manifold Commun. Pure Appl. Math. 39 661-693
[3]  
Bartnik R.(1987)The Poincaré group as the symmetry group of canonical general relativity Ann. Phys. 174 463-498
[4]  
Beig R.(1986)On Witten’s positive-energy proof for weakly asymptotically flat spacetimes Classical Quantum Gravity 3 L123-L128
[5]  
Ó Murchadha N.(1986)A remark on the positive-energy theorem Classical Quantum Gravity 3 L115-L121
[6]  
Bizoń P.(1987)Corrigendum: a remark on the positive-energy theorem Classical Quantum Gravity 4 1049-L210
[7]  
Malec E.(1987)On angular momentum at spatial infinity Classical Quantum Gravity 4 L205-248
[8]  
Chruściel P.T.(1988)On the invariant mass conjecture in general relativity Commn. Math. Phys. 120 233-217
[9]  
Chruściel P.T.(2006)On the asymptotics for the vacuum Einstein constraint equations J. Differ. Geom. 73 185-803
[10]  
Chruściel P.T.(2009)On the center of mass of isolated systems with general asymptotics Classical Quantum Gravity 26 015012, 25-311