Perturbation theory for fractional evolution equations in a Banach space

被引:0
作者
Arzu Ahmadova
Ismail Huseynov
Nazim I. Mahmudov
机构
[1] University of Duisburg-Essen,Faculty of Mathematics
[2] Eastern Mediterranean University,Department of Mathematics
来源
Semigroup Forum | 2022年 / 105卷
关键词
Perturbation theory; Fractional evolution equation; Strongly continuous fractional cosine and sine families; Well-posedness;
D O I
暂无
中图分类号
学科分类号
摘要
A strong inspiration for studying perturbation theory for fractional evolution equations comes from the fact that they have proven to be useful tools in modeling many physical processes. We study fractional evolution equations of order α∈(1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (1,2)$$\end{document} associated with the infinitesimal generator of an operator fractional cosine (sine) function generated by bounded time-dependent perturbations in a Banach space. We show that the fractional abstract Cauchy problem associated with the infinitesimal generator A of a strongly continuous fractional cosine (sine) function remains uniformly well-posed under bounded time-dependent perturbation of A. We also provide some necessary special cases by using the Laplace transform of the generators of the given operator families.
引用
收藏
页码:583 / 618
页数:35
相关论文
共 42 条
[1]  
Ahmadova A(2022)Exponential stability and stabilization of fractional stochastic degenerate evolution equations in a Hilbert space: subordination principle Evol. Equ. Control Theory 11 1997-2015
[2]  
Mahmudov NI(1999)Perturbation properties for abstract evolution equations of fractional order Fract. Calc. Appl. Anal. 2 359-366
[3]  
Nieto JJ(1991)An abstract nonlinear second order differential equation Ann. Pol. Math. 54 155-166
[4]  
Bazhlekova E(2010)On fractional resolvent operator functions Semigroup Forum 80 121-142
[5]  
Bochenek J(1968)Ordinary differential equations in linear topological spaces, I J. Differ. Equ. 5 72-105
[6]  
Chen C(1969)Ordinary differential equations in linear topological spaces, II J. Differ. Equ. 6 50-70
[7]  
Li M(1982)Global existence and boundedness of solutions to the extensible beam equation SIAM J. Math. Anal. 13 739-745
[8]  
Fattorini HO(2021)Existence of solutions of the abstract Cauchy problem of fractional order J. Funct. Anal. 281 109028-2940
[9]  
Fattorini HO(2022)Perturbation properties of fractional strongly continuous cosine and sine family operators Electron. Res. Arch. 30 2911-5042
[10]  
Fitzgibbon WE(2022)On a study of Sobolev type fractional functional evolution equations Math. Methods Appl. Sci. 45 5002-455