Orbital angular momentum at small x

被引:0
|
作者
Yuri V. Kovchegov
机构
[1] The Ohio State University,Department of Physics
来源
Journal of High Energy Physics | / 2019卷
关键词
Perturbative QCD; Resummation;
D O I
暂无
中图分类号
学科分类号
摘要
We determine the small Bjorken x asymptotics of the quark and gluon orbital angular momentum (OAM) distributions in the proton in the double-logarithmic approximation (DLA), which resums powers of αs ln2(1/x) with αs the strong coupling constant. Starting with the operator definitions for the quark and gluon OAM, we simplify them at small x, relating them, respectively, to the polarized dipole amplitudes for the quark and gluon helicities defined in our earlier works. Using the small-x evolution equations derived for these polarized dipole amplitudes earlier we arrive at the following small-x asymptotics of the quark and gluon OAM distributions in the large-Nc limit: 1aLq+q¯xQ2=−ΔΣxQ2∼1x43αsNc2π,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {L}_{q+\overline{q}}\left(x,{Q}^2\right)=-\Delta \Sigma \left(x,{Q}^2\right)\sim {\left(\frac{1}{x}\right)}^{\frac{4}{\sqrt{3}}\kern0.5em \sqrt{\frac{\alpha_s\kern0.5em {N}_c}{2\pi }}}, $$\end{document}1bLGxQ2∼ΔGxQ2∼1x1343αsNc2π.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {L}_G\left(x,{Q}^2\right)\sim \Delta G\left(x,{Q}^2\right)\sim {\left(\frac{1}{x}\right)}^{\frac{13}{4\sqrt{3}}\kern0.5em \sqrt{\frac{\alpha_s\kern0.5em {N}_c}{2\pi }}}. $$\end{document}
引用
收藏
相关论文
共 50 条
  • [21] Quark Orbital Angular Momentum
    Burkardt, Matthias
    4TH INTERNATIONAL WORKSHOP ON TRANSVERSE POLARISATION PHENOMENA IN HARD PROCESSES (TRANSVERSITY 2014), 2015, 85
  • [22] Orbital angular momentum lasers
    Forbes, Andrew
    Mkhumbuza, Light
    Feng, Liang
    NATURE REVIEWS PHYSICS, 2024, 6 (06) : 352 - 364
  • [23] Orbital Angular Momentum in Fibers
    Wang, Jian
    Zhang, Xi
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2023, 41 (07) : 1934 - 1962
  • [24] Measurement of orbital angular momentum
    Pang Songjian
    Mao Hongxia
    Wang Zhenhua
    Bao Xingdong
    SEVENTH SYMPOSIUM ON NOVEL PHOTOELECTRONIC DETECTION TECHNOLOGY AND APPLICATIONS, 2021, 11763
  • [26] Orbital angular momentum in the nucleon
    Garvey, Gerald T.
    PHYSICAL REVIEW C, 2010, 81 (05):
  • [27] Orbital Angular Momentum Microlaser
    Miao, Pei
    Zhang, Zhifeng
    Sun, Jingbo
    Walasik, Wiktor
    Longhi, Stefano
    Litchinitser, Natalia M.
    Feng, Liang
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2017,
  • [28] Orbital angular momentum microlaser
    Miao, Pei
    Zhang, Zhifeng
    Sun, Jingbo
    Walasik, Wiktor
    Longhi, Stefano
    Litchinitser, Natalia M.
    Feng, Liang
    SCIENCE, 2016, 353 (6298) : 464 - 467
  • [29] QUARK ORBITAL ANGULAR MOMENTUM
    Burkardt, Matthias
    LIGHT CONE CRACOW 2012: MODERN APPROACHES TO NONPERTURBATIVE GAUGE THEORIES AND THEIR APPLICATIONS, 2013, 6 (01): : 125 - +
  • [30] Photoelectron momentum distributions with twisted attosecond X waves carrying orbital angular momentum
    Zhang, Xiaofan
    Ma, Xiaomeng
    FRONTIERS IN PHYSICS, 2023, 10