Automatic Microstructural Characterization and Classification Using Higher-Order Spectra on Ultrasound Signals

被引:0
作者
Masoud Vejdannik
Ali Sadr
机构
[1] Iran University of Science & Technology (IUST),School of Electrical Engineering
来源
Journal of Nondestructive Evaluation | 2016年 / 35卷
关键词
Bispectrum; Classification and regression tree; k-Nearest neighbor; Linear discriminant analysis; Microstructural characterization; Non-destructive inspection; Random forest; Ultrasound signals;
D O I
暂无
中图分类号
学科分类号
摘要
During the gas tungsten arc welding of nickel based superalloys, the secondary phases such as Laves and carbides are formed in final stage of solidification. But, other phases such as γ′′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma {''}$$\end{document} and δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} phases can precipitate in the microstructure, during aging at high temperatures. Nevertheless, choosing the appropriate conditions of welding can minimize the formation of the Nb-rich Laves phases and thus reduce the susceptibility to solidification cracking. This study aims at the automatic microstructurally characterizing the kinetics of phase transformations on an Nb-base alloy, thermally aged at 650 and 950 ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }$$\end{document}C for 10, 100 and 200 h, through backscattered ultrasound signals at frequency of 4 MHz. For this, an automated processing system was designed using the spectrum representation of higher order statistics. The ultrasound signals are inherently non-linear and thus the conventional linear time and frequency domain methods can not reveal the complexity of these signals clearly. Bispectrum (the spectral representation of third order correlation) is a non-linear method which is highly robust to noise. In the proposed system, the bispectrum coefficients are subjected to linear discriminant analysis (LDA) technique to reduce the statistical redundancy and reveal discriminating features. These dimensionality reduced features are fed to the classification and regression tree, random forest and k-nearest neighbor (k-NN) classifiers to automatic microstructural characterization. Bispectrum coupled with LDA and k-NN yielded the highest average accuracy of 95.0 and 78.0 %, respectively for thermal aging at 650 and 950 ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }$$\end{document}C. Thus, the proposed processing system provides high reliability to be used for microstructure characterization through ultrasound signals.
引用
收藏
相关论文
共 50 条
[41]   Analysis of Program Representations Based on Abstract Syntax Trees and Higher-Order Markov Chains for Source Code Classification Task [J].
Gorchakov, Artyom V. ;
Demidova, Liliya A. ;
Sovietov, Peter N. .
FUTURE INTERNET, 2023, 15 (09)
[42]   FAULTS DIAGNOSIS IN ROTATING MACHINES USING HIGHER ORDER SPECTRA [J].
Yunusa-Kaltungo, Akilu ;
Sinha, Jyoti K. .
PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2014, VOL 7A, 2014,
[43]   Classification of Induced Magnetic Field Signals for the Microstructural Characterization of Sigma Phase in Duplex Stainless Steels [J].
Silva, Edgard M. ;
Marinho, Leandro B. ;
Reboucas Filho, Pedro P. ;
Leite, Joao P. ;
Leite, Josinaldo P. ;
Fialho, Walter M. L. ;
de Albuquerque, Victor Hugo C. ;
Tavares, Joao Manuel R. S. .
METALS, 2016, 6 (07)
[44]   PERFORMANCE EVALUATION OF DRY EYE DETECTION SYSTEM USING HIGHER-ORDER SPECTRA FEATURES FOR DIFFERENT NOISE LEVELS IN IR THERMAL IMAGES [J].
Sudarshan, Vidya K. ;
Koh, Joel E. W. ;
Tan, Jen Hong ;
Hagiwara, Yuki ;
Chua, Kuang Chua ;
Ng, Eddie Y. K. ;
Tong, Louis .
JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2017, 17 (07)
[45]   Identification of freeplay and aerodynamic nonlinearities in a 2D aerofoil system with via higher-order spectra [J].
Candon, M. ;
Carrese, R. ;
Ogawa, H. ;
Marzocca, P. .
AERONAUTICAL JOURNAL, 2017, 121 (1244) :1-31
[46]   Diagnosis of poor control-loop performance using higher-order statistics [J].
Choudhury, MAAS ;
Shah, SL ;
Thornhill, NF .
AUTOMATICA, 2004, 40 (10) :1719-1728
[47]   Automated detection of chronic kidney disease using higher-order features and elongated quinary patterns from B-mode ultrasound images [J].
Acharya, U. Rajendra ;
Meiburger, Kristen M. ;
Koh, Joel En Wei ;
Hagiwara, Yuki ;
Oh, Shu Lih ;
Leong, Sook Sam ;
Ciaccio, Edward J. ;
Wong, Jeannie Hsiu Ding ;
Shah, Mohammad Nazri Md ;
Molinari, Filippo ;
Ng, Kwan Hoong .
NEURAL COMPUTING & APPLICATIONS, 2020, 32 (15) :11163-11172
[48]   Automated classification of glaucoma stages using higher order cumulant features [J].
Noronha, Kevin P. ;
Acharya, U. Rajendra ;
Nayak, K. Prabhakar ;
Martis, Roshan Joy ;
Bhandary, Sulatha V. .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2014, 10 :174-183
[49]   Detection of sea-mines in sonar imagery using higher-order spectral features [J].
Chandran, V ;
Elgar, S .
DETECTION AND REMEDIATION TECHNOLOGIES FOR MINES AND MINELIKE TARGETS IV, PTS 1 AND 2, 1999, 3710 :578-587
[50]   Blind Estimation of Integer Power-Nonlinearity Using Higher-Order Moment Spectrum [J].
Langkam, Sabita ;
Deb, Alok Kanti .
2015 ANNUAL IEEE INDIA CONFERENCE (INDICON), 2015,