Cyclic quantum teleportation

被引:1
作者
Ying-Xuan Chen
Jing Du
Si-Yuan Liu
Xiao-Hui Wang
机构
[1] Northwest University,Institute of Modern Physics
[2] Northwest University,School of Physics
[3] Shaanxi Key Laboratory for Theoretical Physics Frontiers,undefined
来源
Quantum Information Processing | 2017年 / 16卷
关键词
Quantum information theory; Cyclic quantum teleportation; Six-qubit maximally entangled state; Quantum information networks;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a scheme of cyclic quantum teleportation for three unknown qubits using six-qubit maximally entangled state as the quantum channel. Suppose there are three observers Alice, Bob and Charlie, each of them has been given a quantum system such as a photon or spin-12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2}$$\end{document} particle, prepared in state unknown to them. We show how to implement the cyclic quantum teleportation where Alice can transfer her single-qubit state of qubit a to Bob, Bob can transfer his single-qubit state of qubit b to Charlie and Charlie can also transfer his single-qubit state of qubit c to Alice. We can also implement the cyclic quantum teleportation with N⩾3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\geqslant 3$$\end{document} observers by constructing a 2N-qubit maximally entangled state as the quantum channel. By changing the quantum channel, we can change the direction of teleportation. Therefore, our scheme can realize teleportation in quantum information networks with N observers in different directions, and the security of our scheme is also investigated at the end of the paper.
引用
收藏
相关论文
共 95 条
[1]  
Bennett CH(1993)Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels Phys. Rev. Lett. 70 1895-3933
[2]  
Brassard G(1999)Quantum secret sharing Phys. Rev. A 59 1829-579
[3]  
Crpeau C(1998)Quantum teleportation using three-particle entanglement Phys. Rev. A 58 4394-1127
[4]  
Jozsa R(2011)Efficient quantum circuits for perfect and controlled teleportation of n-qubit nonmaximally entangled states of generalized Bell-type Int. J. Quantum Inf. 9 389-318
[5]  
Peres A(2016)Tripartite quantum controlled teleportation via seven-qubit cluster state Int. J. Theor. Phys. 55 3927-404
[6]  
Wootters WK(2010)Hierarchical quantum-information splitting Opt. Commun. 283 1196-1458
[7]  
Hillery M(2013)Hierarchical quantum communication Phys. Lett. A 377 1337-945
[8]  
Buzek V(2000)Minimum classical bit for remote preparation and measurement of a qubit Phys. Rev. A 63 014302-912
[9]  
Bertaiume A(2001)Quantum remote control: Teleportation of unitary operations Phys. Rev. A 63 042303-3844
[10]  
Karlsson A(1997)Experimental quantum teleportation Nature 390 575-4614