Unitary units and skew elements in group algebras

被引:0
作者
A. Giambruno
C. Polcino Milies
机构
[1] Dipartimento di Matematica,
[2] Università di Palermo,undefined
[3] Via Archirafi 34,undefined
[4] 90123 – Palermo,undefined
[5] Italy. e-mail: agiambr@unipa.it,undefined
[6] Instituto de Matemática e Estatística,undefined
[7] Universidade de São Paulo,undefined
[8] Caixa Postal 66.281,undefined
[9] 05315-970,undefined
[10] São Paulo,undefined
[11] Brazil. e-mail: polcino@ime.usp.br,undefined
来源
manuscripta mathematica | 2003年 / 111卷
关键词
Free Group; Group Identity; Unitary Group; Group Algebra; Torsion Group;
D O I
暂无
中图分类号
学科分类号
摘要
 Let FG be the group algebra of a group G over a field F and let * denote the canonical involution of FG induced by the map g→g−1,gG. Let Un(FG)={uFG|uu*=1} be the group of unitary units of FG. In case char F=0, we classify the torsion groups G for which Un(FG) satisfies a group identity not vanishing on 2-elements. Along the way we actually prove that, in characteristic 0, the unitary group Un(FG) does not contain a free group of rank 2 if FG−, the Lie algebra of skew elements of FG, is Lie nilpotent. Motivated by this connection we characterize most groups G for which FG− is Lie nilpotent and char F≠2.
引用
收藏
页码:195 / 209
页数:14
相关论文
empty
未找到相关数据