A Modified Projected Gradient Method for Monotone Variational Inequalities

被引:0
作者
Jun Yang
Hongwei Liu
机构
[1] Xidian University,School of Mathematics and Statistics
[2] Xianyang Normal University,School of Mathematics and Information Science
来源
Journal of Optimization Theory and Applications | 2018年 / 179卷
关键词
Variational inequalities; Projection; Extragradient method; Monotone mapping; Convex set; 47J20; 90C25; 90C30; 90C52;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate and analyze classical variational inequalities with Lipschitz continuous and monotone mapping in real Hilbert space. The projected reflected gradient method, with varying step size, requires at most two projections onto the feasible set and one value of the mapping per iteration. We modify the method with a simple structure; a weak convergence theorem for our algorithm is proved without any requirement of additional projections and the knowledge of the Lipschitz constant of the mapping. Meanwhile, R-linear convergence rate is obtained under strong monotonicity assumption of the mapping. Preliminary results from numerical experiments are performed.
引用
收藏
页码:197 / 211
页数:14
相关论文
共 20 条
[1]  
Fichera G(1963)Sul problema elastostatico di Signorini con ambigue condizioni al contorno Atti Accad. Naz. Lincei VIII. Ser. Rend Cl. Sci. Fis. Mat. Nat. 34 138-142
[2]  
Stampacchia G(1964)Forms bilineaires coercitives sur les ensembles convexes C. R. Acad. Sci. Paris 258 4413-4416
[3]  
Korpelevich GM(1976)The extragradient method for finding saddle points and other problem Ekonomika i Matematicheskie Metody 12 747-756
[4]  
Noor MA(2004)Some developments in general variational inequalities Appl. Math. Comput. 152 199-277
[5]  
Censor Y(2011)The subgradient extragradient method for solving variational inequalities in Hilbert space J. Optim. Theory Appl. 148 318-335
[6]  
Gibali A(2014)An extragradient algorithm for monotone variational inequalities Cybern. Syst. Anal. 50 271-277
[7]  
Reich S(2000)A modified forward-backward splitting method for maximal monotone mapping SIAM J. Control Optim. 38 431-446
[8]  
Malitsky YuV(1999)A new projection method for monotone variational inequalities SIAM J. Control Optim. 37 765-776
[9]  
Semenov VV(2015)Projected reflected gradient methods for variational inequalities SIAM J. Optim. 25 502-520
[10]  
Tseng P(2016)Convergence of one-step projected gradient methods for variational inequalities J. Optim. Theory Appl. 171 146-168