q-Series congruences involving statistical mechanics partition functions in regime III and IV of Baxter’s solution of the hard-hexagon model

被引:0
作者
Mircea Merca
机构
[1] University of Craiova,Department of Mathematics
[2] Academy of Romanian Scientists,undefined
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2020年 / 114卷
关键词
Partitions; Parity; Hard-hexagon model; 11P81; 11P83; 05A17; 05A19;
D O I
暂无
中图分类号
学科分类号
摘要
For each s∈{2,4}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\in \{2,4\}$$\end{document}, the generating function of Rs(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_s(n)$$\end{document}, the number of partitions of n into odd parts or congruent to 0, ±s(mod10)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm \, s\pmod {10}$$\end{document}, arises naturally in regime III of Rodney Baxter’s solution of the hard-hexagon model of statistical mechanics. For each s∈{1,3}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\in \{1,3\}$$\end{document}, the generating function of Rs∗(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^*_s(n)$$\end{document}, the number of partitions of n into parts not congruent to 0, ±s(mod10)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm \, s\pmod {10}$$\end{document} and 10-2s(mod20)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10-2s \pmod {20}$$\end{document}, arises naturally in regime IV of Rodney Baxter’s solution of the hard-hexagon model of statistical mechanics. In this paper, we investigate the parity of Rs(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_s(n)$$\end{document} and Rs∗(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^*_s(n)$$\end{document}, providing new parity results involving sums of partition numbers p(n) and squares in arithmetic progressions.
引用
收藏
相关论文
共 12 条
  • [1] Andrews GE(1981)The hard-hexagon model and Rogers–Ramanujan type identities Proc. Natl. Acad. Sci. USA 78 5290-5292
  • [2] Andrews GE(2007)Euler’s “De Partitio Numerorum” Bull. Am. Math. Soc. (N.S.) 44 561-573
  • [3] Andrews GE(2018)Truncated theta series and a problem of Guo and Zeng J. Combin. Theory Ser. A 154 610-619
  • [4] Merca M(1972)A simple proof of the quintuple product identity Proc. Am. Math. Soc. 32 42-44
  • [5] Carlitz L(2017)Parity of sums of partition numbers and squares in arithmetic progressions Ramanujan J 44 617-630
  • [6] Subbarao MV(2012)Fast algorithm for generating ascending compositions J. Math. Model. Algorithms 11 89-104
  • [7] Ballantine C(2013)Binary diagrams for storing ascending compositions Comput. J. 56 1320-1327
  • [8] Merca M(1970)On Watson’s quintuple product identity Proc. Am. Math. Soc. 26 23-27
  • [9] Merca M(undefined)undefined undefined undefined undefined-undefined
  • [10] Merca M(undefined)undefined undefined undefined undefined-undefined