Perfect state transfer in Laplacian quantum walk

被引:0
|
作者
Rachael Alvir
Sophia Dever
Benjamin Lovitz
James Myer
Christino Tamon
Yan Xu
Hanmeng Zhan
机构
[1] Colorado Mesa University,Department of Mathematics and Statistics
[2] University of Texas at Austin,Department of Mathematics
[3] Bates College,Mathematics Department
[4] SUNY Potsdam,Department of Mathematics
[5] Clarkson University,Department of Computer Science
[6] University of Waterloo,Department of Combinatorics and Optimization
来源
Journal of Algebraic Combinatorics | 2016年 / 43卷
关键词
Laplacian; Quantum walk; Perfect state transfer ; Join; Equitable partition; Weak product; MC05C50;
D O I
暂无
中图分类号
学科分类号
摘要
For a graph G and a related symmetric matrix M, the continuous-time quantum walk on G relative to M is defined as the unitary matrix U(t)=exp(-itM)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U(t) = \exp (-itM)$$\end{document}, where t varies over the reals. Perfect state transfer occurs between vertices u and v at time τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} if the (u, v)-entry of U(τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U(\tau )$$\end{document} has unit magnitude. This paper studies quantum walks relative to graph Laplacians. Some main observations include the following closure properties for perfect state transfer. If an n-vertex graph has perfect state transfer at time τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} relative to the Laplacian, then so does its complement if nτ∈2πZ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\tau \in 2\pi {\mathbb {Z}}$$\end{document}. As a corollary, the join of K¯2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{K}_{2}$$\end{document} with any m-vertex graph has perfect state transfer relative to the Laplacian if and only if m≡2(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \equiv 2\pmod {4}$$\end{document}. This was previously known for the join of K¯2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{K}_{2}$$\end{document} with a clique (Bose et al. in Int J Quant Inf 7:713–723, 2009). If a graph G has perfect state transfer at time τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} relative to the normalized Laplacian, then so does the weak product G×H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G \times H$$\end{document} if for any normalized Laplacian eigenvalues λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} of G and μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} of H, we have μ(λ-1)τ∈2πZ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu (\lambda -1)\tau \in 2\pi {\mathbb {Z}}$$\end{document}. As a corollary, a weak product of P3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{3}$$\end{document} with an even clique or an odd cube has perfect state transfer relative to the normalized Laplacian. It was known earlier that a weak product of a circulant with odd integer eigenvalues and an even cube or a Cartesian power of P3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{3}$$\end{document} has perfect state transfer relative to the adjacency matrix. As for negative results, no path with four vertices or more has antipodal perfect state transfer relative to the normalized Laplacian. This almost matches the state of affairs under the adjacency matrix (Godsil in Discret Math 312(1):129–147, 2011).
引用
收藏
页码:801 / 826
页数:25
相关论文
共 50 条
  • [41] Further results on the perfect state transfer in integral circulant graphs
    Petkovic, Marko D.
    Basic, Milan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (02) : 300 - 312
  • [42] Signless Laplacian state transfer on Q -graphs
    Zhang, Xiao-Qin
    Cui, Shu-Yu
    Tian, Gui-Xian
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 425
  • [43] Quantum state transfer in graphs with tails
    Bernard, Pierre-Antoine
    Tamon, Christino
    Vinet, Luc
    Xie, Weichen
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2025, 710 : 363 - 384
  • [44] Perfect state transfer on abelian Cayley graphs
    Tan, Ying-Ying
    Feng, Keqin
    Cao, Xiwang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 563 : 331 - 352
  • [45] Perfect state transfer in NEPS of complete graphs
    Li, Yipeng
    Liu, Xiaogang
    Zhang, Shenggui
    Zhou, Sanming
    DISCRETE APPLIED MATHEMATICS, 2021, 289 : 98 - 114
  • [46] Perfect state transfer on gcd-graphs
    Pal, Hiranmoy
    Bhattacharjya, Bikash
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (11) : 2245 - 2256
  • [47] WHEN CAN PERFECT STATE TRANSFER OCCUR?
    Godsil, Chris
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2012, 23 : 877 - 890
  • [48] PERFECT STATE TRANSFER IS POLY-TIME
    Coutinho, Gabriel
    Godsil, Chris
    QUANTUM INFORMATION & COMPUTATION, 2017, 17 (5-6) : 495 - 502
  • [49] Perfect state transfer in integral circulant graphs
    Basic, Milan
    Petkovic, Marko D.
    Stevanovic, Dragan
    APPLIED MATHEMATICS LETTERS, 2009, 22 (07) : 1117 - 1121
  • [50] Perfect state transfer in NEPS of some graphs
    Zheng, Shasha
    Liu, Xiaogang
    Zhang, Shenggui
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (08) : 1518 - 1533