Perfect state transfer in Laplacian quantum walk

被引:0
|
作者
Rachael Alvir
Sophia Dever
Benjamin Lovitz
James Myer
Christino Tamon
Yan Xu
Hanmeng Zhan
机构
[1] Colorado Mesa University,Department of Mathematics and Statistics
[2] University of Texas at Austin,Department of Mathematics
[3] Bates College,Mathematics Department
[4] SUNY Potsdam,Department of Mathematics
[5] Clarkson University,Department of Computer Science
[6] University of Waterloo,Department of Combinatorics and Optimization
来源
Journal of Algebraic Combinatorics | 2016年 / 43卷
关键词
Laplacian; Quantum walk; Perfect state transfer ; Join; Equitable partition; Weak product; MC05C50;
D O I
暂无
中图分类号
学科分类号
摘要
For a graph G and a related symmetric matrix M, the continuous-time quantum walk on G relative to M is defined as the unitary matrix U(t)=exp(-itM)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U(t) = \exp (-itM)$$\end{document}, where t varies over the reals. Perfect state transfer occurs between vertices u and v at time τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} if the (u, v)-entry of U(τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U(\tau )$$\end{document} has unit magnitude. This paper studies quantum walks relative to graph Laplacians. Some main observations include the following closure properties for perfect state transfer. If an n-vertex graph has perfect state transfer at time τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} relative to the Laplacian, then so does its complement if nτ∈2πZ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\tau \in 2\pi {\mathbb {Z}}$$\end{document}. As a corollary, the join of K¯2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{K}_{2}$$\end{document} with any m-vertex graph has perfect state transfer relative to the Laplacian if and only if m≡2(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \equiv 2\pmod {4}$$\end{document}. This was previously known for the join of K¯2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{K}_{2}$$\end{document} with a clique (Bose et al. in Int J Quant Inf 7:713–723, 2009). If a graph G has perfect state transfer at time τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} relative to the normalized Laplacian, then so does the weak product G×H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G \times H$$\end{document} if for any normalized Laplacian eigenvalues λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} of G and μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} of H, we have μ(λ-1)τ∈2πZ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu (\lambda -1)\tau \in 2\pi {\mathbb {Z}}$$\end{document}. As a corollary, a weak product of P3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{3}$$\end{document} with an even clique or an odd cube has perfect state transfer relative to the normalized Laplacian. It was known earlier that a weak product of a circulant with odd integer eigenvalues and an even cube or a Cartesian power of P3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{3}$$\end{document} has perfect state transfer relative to the adjacency matrix. As for negative results, no path with four vertices or more has antipodal perfect state transfer relative to the normalized Laplacian. This almost matches the state of affairs under the adjacency matrix (Godsil in Discret Math 312(1):129–147, 2011).
引用
收藏
页码:801 / 826
页数:25
相关论文
共 50 条
  • [31] Perfect quantum state transfer on Cayley graphs over dicyclic groups
    Wang, Dandan
    Cao, Xiwang
    LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (01) : 76 - 91
  • [32] An infinite family of circulant graphs with perfect state transfer in discrete quantum walks
    Zhan, Hanmeng
    QUANTUM INFORMATION PROCESSING, 2019, 18 (12)
  • [33] Perfect state transfer on NEPS of the path on three vertices
    Pal, Hiranmoy
    Bhattacharjya, Bikash
    DISCRETE MATHEMATICS, 2016, 339 (02) : 831 - 838
  • [34] The signless Laplacian state transfer in coronas
    Tian, Gui-Xian
    Yu, Ping-Kang
    Cui, Shu-Yu
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (02) : 278 - 295
  • [35] Perfect quantum state transfer of hard-core bosons on weighted path graphs
    Large, Steven J.
    Underwood, Michael S.
    Feder, David L.
    PHYSICAL REVIEW A, 2015, 91 (03):
  • [36] Asymptotically perfect efficient quantum state transfer across uniform chains with two impurities
    Chen, Xining
    Mereau, Robert
    Feder, David L.
    PHYSICAL REVIEW A, 2016, 93 (01)
  • [37] Effect of disturbance in perfect state transfer
    Chin. Phys., 2006, 2 (272-275): : 272 - 275
  • [38] Effect of disturbance in perfect state transfer
    Liu, D
    Zhang, JF
    CHINESE PHYSICS, 2006, 15 (02): : 272 - 275
  • [39] Perfect state transfer in cubelike graphs
    Cheung, Wang-Chi
    Godsil, Chris
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (10) : 2468 - 2474
  • [40] Which weighted circulant networks have perfect state transfer?
    Basic, Milan
    INFORMATION SCIENCES, 2014, 257 : 193 - 209