Perfect state transfer in Laplacian quantum walk

被引:0
|
作者
Rachael Alvir
Sophia Dever
Benjamin Lovitz
James Myer
Christino Tamon
Yan Xu
Hanmeng Zhan
机构
[1] Colorado Mesa University,Department of Mathematics and Statistics
[2] University of Texas at Austin,Department of Mathematics
[3] Bates College,Mathematics Department
[4] SUNY Potsdam,Department of Mathematics
[5] Clarkson University,Department of Computer Science
[6] University of Waterloo,Department of Combinatorics and Optimization
来源
Journal of Algebraic Combinatorics | 2016年 / 43卷
关键词
Laplacian; Quantum walk; Perfect state transfer ; Join; Equitable partition; Weak product; MC05C50;
D O I
暂无
中图分类号
学科分类号
摘要
For a graph G and a related symmetric matrix M, the continuous-time quantum walk on G relative to M is defined as the unitary matrix U(t)=exp(-itM)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U(t) = \exp (-itM)$$\end{document}, where t varies over the reals. Perfect state transfer occurs between vertices u and v at time τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} if the (u, v)-entry of U(τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U(\tau )$$\end{document} has unit magnitude. This paper studies quantum walks relative to graph Laplacians. Some main observations include the following closure properties for perfect state transfer. If an n-vertex graph has perfect state transfer at time τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} relative to the Laplacian, then so does its complement if nτ∈2πZ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\tau \in 2\pi {\mathbb {Z}}$$\end{document}. As a corollary, the join of K¯2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{K}_{2}$$\end{document} with any m-vertex graph has perfect state transfer relative to the Laplacian if and only if m≡2(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \equiv 2\pmod {4}$$\end{document}. This was previously known for the join of K¯2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{K}_{2}$$\end{document} with a clique (Bose et al. in Int J Quant Inf 7:713–723, 2009). If a graph G has perfect state transfer at time τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} relative to the normalized Laplacian, then so does the weak product G×H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G \times H$$\end{document} if for any normalized Laplacian eigenvalues λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} of G and μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} of H, we have μ(λ-1)τ∈2πZ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu (\lambda -1)\tau \in 2\pi {\mathbb {Z}}$$\end{document}. As a corollary, a weak product of P3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{3}$$\end{document} with an even clique or an odd cube has perfect state transfer relative to the normalized Laplacian. It was known earlier that a weak product of a circulant with odd integer eigenvalues and an even cube or a Cartesian power of P3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{3}$$\end{document} has perfect state transfer relative to the adjacency matrix. As for negative results, no path with four vertices or more has antipodal perfect state transfer relative to the normalized Laplacian. This almost matches the state of affairs under the adjacency matrix (Godsil in Discret Math 312(1):129–147, 2011).
引用
收藏
页码:801 / 826
页数:25
相关论文
共 50 条
  • [21] Universality in perfect state transfer
    Connelly, Erin
    Grammel, Nathaniel
    Kraut, Michael
    Serazo, Luis
    Tamon, Christino
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 531 : 516 - 532
  • [22] Quantum Simulation of Perfect State Transfer on Weighted Cubelike Graphs
    Mulherkar, Jaideep
    Rajdeepak, Rishikant
    VadivelMurugan, Sunitha
    MATHEMATICS AND COMPUTING, ICMC 2022, 2022, 415 : 117 - 128
  • [24] Characterization of quantum circulant networks having perfect state transfer
    Milan Bašić
    Quantum Information Processing, 2013, 12 : 345 - 364
  • [25] The effect of quantum noise on algorithmic perfect quantum state transfer on NISQ processors
    Babukhin, D., V
    Pogosov, W., V
    QUANTUM INFORMATION PROCESSING, 2022, 21 (01)
  • [26] The effect of quantum noise on algorithmic perfect quantum state transfer on NISQ processors
    D. V. Babukhin
    W. V. Pogosov
    Quantum Information Processing, 2022, 21
  • [27] Perfect quantum state transfer in weighted paths with potentials (loops) using orthogonal polynomials
    Kirkland, Steve
    McLaren, Darian
    Pereira, Rajesh
    Plosker, Sarah
    Zhang, Xiaohong
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (05) : 1043 - 1061
  • [28] PERFECT STATE TRANSFER ON SIGNED GRAPHS
    Brown, John
    Godsil, Chris
    Mallory, Devlin
    Raz, Abigail
    Tamon, Christino
    QUANTUM INFORMATION & COMPUTATION, 2013, 13 (5-6) : 511 - 530
  • [29] PERFECT STATE TRANSFER ON QUOTIENT GRAPHS
    Bachman, Rachel
    Predette, Eric
    Fuller, Jessica
    Landry, Michael
    Opperman, Michael
    Tamon, Christino
    Tollefson, Andrew
    QUANTUM INFORMATION & COMPUTATION, 2012, 12 (3-4) : 293 - 313
  • [30] Quantum state transfer on unsymmetrical graphs via discrete-time quantum walk
    Cao, Wei-Feng
    Yang, Yu-Guang
    Li, Dan
    Dong, Jing-Ru
    Zhou, Yi-Hua
    Shi, Wei-Min
    MODERN PHYSICS LETTERS A, 2019, 34 (38)