Perfect state transfer in Laplacian quantum walk

被引:0
|
作者
Rachael Alvir
Sophia Dever
Benjamin Lovitz
James Myer
Christino Tamon
Yan Xu
Hanmeng Zhan
机构
[1] Colorado Mesa University,Department of Mathematics and Statistics
[2] University of Texas at Austin,Department of Mathematics
[3] Bates College,Mathematics Department
[4] SUNY Potsdam,Department of Mathematics
[5] Clarkson University,Department of Computer Science
[6] University of Waterloo,Department of Combinatorics and Optimization
来源
Journal of Algebraic Combinatorics | 2016年 / 43卷
关键词
Laplacian; Quantum walk; Perfect state transfer ; Join; Equitable partition; Weak product; MC05C50;
D O I
暂无
中图分类号
学科分类号
摘要
For a graph G and a related symmetric matrix M, the continuous-time quantum walk on G relative to M is defined as the unitary matrix U(t)=exp(-itM)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U(t) = \exp (-itM)$$\end{document}, where t varies over the reals. Perfect state transfer occurs between vertices u and v at time τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} if the (u, v)-entry of U(τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U(\tau )$$\end{document} has unit magnitude. This paper studies quantum walks relative to graph Laplacians. Some main observations include the following closure properties for perfect state transfer. If an n-vertex graph has perfect state transfer at time τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} relative to the Laplacian, then so does its complement if nτ∈2πZ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\tau \in 2\pi {\mathbb {Z}}$$\end{document}. As a corollary, the join of K¯2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{K}_{2}$$\end{document} with any m-vertex graph has perfect state transfer relative to the Laplacian if and only if m≡2(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \equiv 2\pmod {4}$$\end{document}. This was previously known for the join of K¯2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{K}_{2}$$\end{document} with a clique (Bose et al. in Int J Quant Inf 7:713–723, 2009). If a graph G has perfect state transfer at time τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} relative to the normalized Laplacian, then so does the weak product G×H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G \times H$$\end{document} if for any normalized Laplacian eigenvalues λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} of G and μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} of H, we have μ(λ-1)τ∈2πZ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu (\lambda -1)\tau \in 2\pi {\mathbb {Z}}$$\end{document}. As a corollary, a weak product of P3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{3}$$\end{document} with an even clique or an odd cube has perfect state transfer relative to the normalized Laplacian. It was known earlier that a weak product of a circulant with odd integer eigenvalues and an even cube or a Cartesian power of P3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{3}$$\end{document} has perfect state transfer relative to the adjacency matrix. As for negative results, no path with four vertices or more has antipodal perfect state transfer relative to the normalized Laplacian. This almost matches the state of affairs under the adjacency matrix (Godsil in Discret Math 312(1):129–147, 2011).
引用
收藏
页码:801 / 826
页数:25
相关论文
共 50 条
  • [1] Perfect state transfer in Laplacian quantum walk
    Alvir, Rachael
    Dever, Sophia
    Lovitz, Benjamin
    Myer, James
    Tamon, Christino
    Xu, Yan
    Zhan, Hanmeng
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2016, 43 (04) : 801 - 826
  • [2] NO LAPLACIAN PERFECT STATE TRANSFER IN TREES
    Coutinho, Gabriel
    Liu, Henry
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (04) : 2179 - 2188
  • [3] Perfect state transfer, equitable partition and continuous-time quantum walk based search
    Ide, Yusuke
    Narimatsu, Akihiro
    QUANTUM STUDIES-MATHEMATICS AND FOUNDATIONS, 2024, 11 (02) : 275 - 285
  • [4] Perfect state transfer by means of discrete-time quantum walk on the complete bipartite graph
    Huang, Jiani
    Li, Dan
    Li, Panlong
    Zhou, Yuqian
    Yang, Yuguang
    PHYSICA SCRIPTA, 2024, 99 (01)
  • [5] Perfect state transfer by means of discrete-time quantum walk on complete bipartite graphs
    M. Štefaňák
    S. Skoupý
    Quantum Information Processing, 2017, 16
  • [6] Perfect state transfer by means of discrete-time quantum walk on complete bipartite graphs
    Stefanak, M.
    Skoupy, S.
    QUANTUM INFORMATION PROCESSING, 2017, 16 (03)
  • [7] Quantum walk state transfer on a hypercube
    Stefanak, Martin
    Skoupy, Stanislav
    PHYSICA SCRIPTA, 2023, 98 (10)
  • [8] Quantum walks on simplexes and multiple perfect state transfer
    Miki, Hiroshi
    Tsujimoto, Satoshi
    Zhao, Da
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (46)
  • [9] QUANTUM PERFECT STATE TRANSFER ON WEIGHTED JOIN GRAPHS
    Javier Angeles-Canul, Ricardo
    Norton, Rachael M.
    Opperman, Michael C.
    Paribello, Christopher C.
    Russell, Matthew C.
    Tamon, Christino
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2009, 7 (08) : 1429 - 1445
  • [10] Continuous-Time Quantum Walk in Glued Trees: Localized State-Mediated Almost Perfect Quantum-State Transfer
    Pouthier, Vincent
    Pepe, Lucie
    Yalouz, Saad
    ENTROPY, 2024, 26 (06)