Computer-Aided Detection of Pulmonary Nodules in Computed Tomography Using ClearReadCT

被引:0
|
作者
Anne-Kathrin Wagner
Arno Hapich
Marios Nikos Psychogios
Ulf Teichgräber
Ansgar Malich
Ismini Papageorgiou
机构
[1] University Hospital Jena,Institute of Diagnostic and Interventional Radiology
[2] Südharz Hospital Nordhausen,Institute of Radiology
[3] Südharz Hospital Nordhausen,Department of Thoracic Surgery
[4] University Medicine Göttingen,Institute of Diagnostic and Interventional Neuroradiology
来源
Journal of Medical Systems | 2019年 / 43卷
关键词
nodule classification; segmentation; vessel suppression; background elimination; lung cancer;
D O I
暂无
中图分类号
学科分类号
摘要
This study evaluates the accuracy of a computer-aided detection (CAD) application for pulmonary nodular lesions (PNL) in computed tomography (CT) scans, the ClearReadCT (Riverain Technologies). The study was retrospective for 106 biopsied PNLs from 100 patients. Seventy-five scans were Contrast-Enhanced (CECT) and 25 received no enhancer (NECT). Axial reconstructions in soft-tissue and lung kernel were applied at three different slice thicknesses, 0.75 mm (CECT/NECT n = 25/6), 1.5 mm (n = 18/9) and 3.0 mm (n = 43/18). We questioned the effect of (1) enhancer, (2) kernel and (3) slice thickness on the CAD performance. Our main findings are: (1) Vessel suppression is effective and specific in both NECT and CECT. (2) Contrast enhancement significantly increased the CAD sensitivity from 60% in NECT to 80% in CECT, P = 0.025 Fischer’s exact test. (3) The CAD sensitivity was 84% in 3 mm slices compared to 68% in 0.75 mm slices, P > 0.2 Fischer’s exact test. (4) Small lesions of low attenuation were detected with higher sensitivity. (5) Lung kernel reconstructions increased the false positive rate without affecting the sensitivity (P > 0.05 McNemar’s test). In conclusion, ClearReadCT showed an optimized sensitivity of 84% and a positive predictive value of 67% in enhanced lung scans with thick, soft kernel reconstructions. NECT, thin slices and lung kernel reconstruction were associated with inferior performance.
引用
收藏
相关论文
共 50 条
  • [21] Computer-aided detection of solid lung nodules in lossy compressed multidetector computed tomography chest exams
    Raffy, Philippe
    Gaudeau, Yann
    Miller, Dave P.
    Moureaux, Jean-Marie
    Castellino, Ronald A.
    ACADEMIC RADIOLOGY, 2006, 13 (10) : 1194 - 1203
  • [22] Evaluation of Classifiers for Computer-aided Detection in Computed Tomography Colonography
    Song, Bowen
    Zhu, Hongbin
    Zhu, Wei
    Liang, Zhengrong
    2011 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2011, : 3850 - 3854
  • [23] Pulmonary lobar volumetry using novel volumetric computer-aided diagnosis and computed tomography
    Iwano, Shingo
    Kitano, Mariko
    Matsuo, Keiji
    Kawakami, Kenichi
    Koike, Wataru
    Kishimoto, Mariko
    Inoue, Tsutomu
    Li, Yuanzhong
    Naganawa, Shinji
    INTERACTIVE CARDIOVASCULAR AND THORACIC SURGERY, 2013, 17 (01) : 59 - 65
  • [24] Aspects of computer-aided detection (CAD) and volumetry of pulmonary nodules using multislice CT
    Wiemker, R
    Rogalla, P
    Blaffert, T
    Sifri, D
    Hay, O
    Shah, E
    Truyen, R
    Fleiter, T
    BRITISH JOURNAL OF RADIOLOGY, 2005, 78 : S46 - S56
  • [25] A new dataset of computed-tomography angiography images for computer-aided detection of pulmonary embolism
    Mojtaba Masoudi
    Hamid-Reza Pourreza
    Mahdi Saadatmand-Tarzjan
    Noushin Eftekhari
    Fateme Shafiee Zargar
    Masoud Pezeshki Rad
    Scientific Data, 5
  • [26] A new dataset of computed-tomography angiography images for computer-aided detection of pulmonary embolism
    Masoudi, Mojtaba
    Pourreza, Hamid-Reza
    Saadatmand-Tarzjan, Mahdi
    Eftekhari, Noushin
    Zargar, Fateme Shafiee
    Rad, Masoud Pezeshki
    SCIENTIFIC DATA, 2018, 5
  • [27] Computer-aided detection of pulmonary nodules:: influence of nodule characteristics on detection performance
    Marten, K
    Engelke, C
    Seyfarth, T
    Grillhösl, A
    Obenauer, S
    Rummeny, EJ
    CLINICAL RADIOLOGY, 2005, 60 (02) : 196 - 206
  • [28] Computer-aided detection of pulmonary nodules in low-dose CT
    Delogu, P.
    Fantacci, M. E.
    Gori, I.
    Martinez, A. Preite
    Retico, A.
    COMPUTATIONAL MODELLING OF OBJECTS REPRESENTED IN IMAGES: FUNDAMENTALS, METHODS AND APPLICATIONS, 2007, : 165 - 167
  • [29] Observer training for computer-aided detection of pulmonary nodules in chest radiography
    De Boo, Diederick W.
    van Hoorn, Francois
    van Schuppen, Joost
    Schijf, Laura
    Scheerder, Maeke J.
    Freling, Nicole J.
    Mets, Onno
    Weber, Michael
    Schaefer-Prokop, Cornelia M.
    EUROPEAN RADIOLOGY, 2012, 22 (08) : 1659 - 1664
  • [30] Observer training for computer-aided detection of pulmonary nodules in chest radiography
    Diederick W. De Boo
    François van Hoorn
    Joost van Schuppen
    Laura Schijf
    Maeke J. Scheerder
    Nicole J. Freling
    Onno Mets
    Michael Weber
    Cornelia M. Schaefer-Prokop
    European Radiology, 2012, 22 : 1659 - 1664