Some spectral mapping theorems through local spectral theory

被引:1
作者
Aiena P. [1 ]
Biondi M.T. [2 ]
机构
[1] Dipartimento di Matematica ed Applicazioni Facoltà di Ingegneria, Università di Palermo, I-90128 Palermo, Viale delle Scienze
[2] Departmento de Matemáticas, Facultad de Ciencias, Universidad UCLA de Barquisimeto
关键词
Single valued extension property; spectral mapping theorems; Weyl and semi-Browder operators; Weyl's theorem;
D O I
10.1007/BF02872869
中图分类号
学科分类号
摘要
The spectral mapping theorems for Browder spectrum and for semi-Browder spectra have been proved by several authors [14], [29] and [33], by using different methods. We shall employ a local spectral argument to establish these spectral mapping theorems, as well as, the spectral mapping theorem relative to some other classical spectra. We also prove that if T or T* has the single-valued extension property some of the more important spectra originating from Fredholm theory coincide. This result is extended, always in the case T or T* has the single valued extension property, to f(T), where f is an analytic function defined on an open disc containing the spectrum of T. In the last part we improve a recent result of Curto and Han [10] by proving that for every transaloid operator T a-Weyl's theorem holds for f(T) and f(T)*. © 2004 Springer.
引用
收藏
页码:165 / 184
页数:19
相关论文
共 36 条
  • [21] Lee S.H., Lee W.Y., A spectral mapping theorem for the Weyl spectrum, Glasgow Math. J., 38, pp. 61-64, (1996)
  • [22] Mbekhta M., Sur la théorie spectrale locale et limite des nilpotents, Proc. Amer. Math. Soc., 110, pp. 621-631, (1990)
  • [23] Mbekhta M., Ouahab A., Perturbation des opérateurs s-réguliers. Topics in operator theory, operator algebras and applications, Rom. Acad., pp. 239-249, (1994)
  • [24] Muller V., On the regular spectrum, J. Operator Theory, 31, pp. 363-380, (1994)
  • [25] Nussbaum R.D., Spectral mapping theorems and perturbation theorems for Browder's essential spectrum, Trans. Amer. Math. Soc., 150, pp. 445-455, (1970)
  • [26] Oberai K.K., Spectral mapping theorem foe essential spectra, Rev. Roum. Math. Pures Et Appl., 3, pp. 365-373, (1970)
  • [27] Rakocevic V., Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl., 34, 10, pp. 915-919, (1989)
  • [28] Rakocevic V., Generalized spectrum and commuting compact perturbation, Proc. Edinburgh Math. Soc., 36, 2, pp. 197-209, (1993)
  • [29] Rakocevic V., Approximate point spectrum and commuting compact perturbations, Glasgow Math. J., 28, pp. 193-198, (1986)
  • [30] Rakocevic V., Semi-Fredholm operators with finite ascent or descent and perturbations, Proc. Amer. Math. Soc., 123, pp. 3823-3825, (1995)