Some spectral mapping theorems through local spectral theory

被引:1
作者
Aiena P. [1 ]
Biondi M.T. [2 ]
机构
[1] Dipartimento di Matematica ed Applicazioni Facoltà di Ingegneria, Università di Palermo, I-90128 Palermo, Viale delle Scienze
[2] Departmento de Matemáticas, Facultad de Ciencias, Universidad UCLA de Barquisimeto
关键词
Single valued extension property; spectral mapping theorems; Weyl and semi-Browder operators; Weyl's theorem;
D O I
10.1007/BF02872869
中图分类号
学科分类号
摘要
The spectral mapping theorems for Browder spectrum and for semi-Browder spectra have been proved by several authors [14], [29] and [33], by using different methods. We shall employ a local spectral argument to establish these spectral mapping theorems, as well as, the spectral mapping theorem relative to some other classical spectra. We also prove that if T or T* has the single-valued extension property some of the more important spectra originating from Fredholm theory coincide. This result is extended, always in the case T or T* has the single valued extension property, to f(T), where f is an analytic function defined on an open disc containing the spectrum of T. In the last part we improve a recent result of Curto and Han [10] by proving that for every transaloid operator T a-Weyl's theorem holds for f(T) and f(T)*. © 2004 Springer.
引用
收藏
页码:165 / 184
页数:19
相关论文
共 36 条
  • [1] Aiena P., Monsalve O., Operators which do not have the single valued extension property, J. Math. Anal. Appl., 250, pp. 435-448, (2000)
  • [2] Aiena P., Monsalve O., The single valued extension property and the generalized Kato decomposition property, Acta Sci. Math. (Szeged), 67, pp. 461-477, (2001)
  • [3] Aiena P., Carpintero C., Single valued extension property and semi-Browder spectra, To appear in Acta Sci. Math. (Szeged), (2003)
  • [4] Aiena P., Carpintero C., Weyl's theorem, a-Weyl's theorem and single-valued extension property, (2003)
  • [5] Aiena P., Colasante M.L., Gonzalez M., Operators which have a closed quasi-nilpotent part, Proc. Amer. Math. Soc., 130, 9, pp. 2701-2710, (2001)
  • [6] Aiena P., Miller T.L., Neumann M.M., On a localized single valued extension property, To appear on Proc. of Roy. Irish Acad., (2002)
  • [7] Aiena P., Rosas E., The single valued extension property at the points of the approximate point spectrum, J. Math. Anal. Appl., 279, 1, pp. 180-188, (2003)
  • [8] Aiena P., Mbekhta M., Characterization of some classes of operators by means of the Kato decomposition, Boll. Un. Mat. It., 10 A, pp. 609-621, (1996)
  • [9] Caradus S.R., Pfaffenberger W.E., Yood B., Calkin Algebras of Operators and Algebras of Operators on Banach Spaces, (1974)
  • [10] Curto R.E., Han Y.M., Weyl's theorem, a-Weyl's theorem, and local spectral theory, J. London Math. Soc., 67, 2, pp. 499-509, (2003)